
Turning Merge Conflicts Into Conflict-Induced Variability
Manuel Ohrndorf
University of Bern

Switzerland

Alexander Boll
University of Bern

Switzerland

Roman Bögli
University of Bern

Switzerland

Timo Kehrer
University of Bern

Switzerland

Abstract
Merging is central to software version control and collaborative
work, yet current techniques force developers to resolve conflicts im-
mediately upon each merge attempt, causing constant interruptions
and hampering continuous integration. To mitigate, we propose a
paradigm shift: merge conflicts shall be no longer treated as obsta-
cles to be eliminated immediately, but as a form of software vari-
ability that explicitly captures diverging developer intentions. Such
conflict-induced variability defines alternative behaviors that can
be explored, analyzed, and resolved upon request, enabling deferred
bulk conflict resolution based on the analysis results. With this, we
open an avenue of research around a paradigm that shall preserve
the practicality of today’s merging techniques, while accelerating
traditional versioning workflows through increased flexibility and
more effective conflict resolution.

CCS Concepts
• Software and its engineering → Software configuration
management and version control systems; Collaboration in
software development.

Keywords
Software Merging, Merge Conflict Resolution, Merge Conflict Tol-
erance, Conflict-Induced Variability, Software Product Lines
ACM Reference Format:
Manuel Ohrndorf, Alexander Boll, Roman Bögli, and Timo Kehrer. 2026.
TurningMerge Conflicts Into Conflict-Induced Variability. In 2026 IEEE/ACM
48th International Conference on Software Engineering (ICSE-NIER ’26), April
12–18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3786582.3786840

1 Introduction
Despite the availability of advanced version control systems such
as Git [29], merge conflicts arising from concurrent changes to mul-
tiple working copies of a development artifact are unavoidable in
collaborative software development. Empirical studies indicate that
10–20% of merge attempts result in conflicts, with rates reaching
up to 50% in some cases [8, 14]. Merge conflict resolution thus rep-
resents a time-consuming and disruptive task prone to errors [21],
sometimes taking hours to days of manual work [8, 21].

Given the significance of the problem, ongoing research on soft-
ware merging exists almost as long as the problem itself [44]. A
key limitation of existing approaches is the implicit assumption
that conflict detection and conflict resolution are tightly coupled.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE-NIER ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2425-1/2026/04
https://doi.org/10.1145/3786582.3786840

Given that conflict resolution is far from being fully automated,
developers ultimately have to make merge decisions to successfully
finish a merge, bothering them in their daily work and hampering
continuous integration [8, 21].

In this paper, we propose a novel paradigm that tolerates merge
conflicts temporarily. The key idea is to take a radically different
perspective on merge conflicts: rather than enforcing their imme-
diate resolution at every merge attempt, we treat them as a new
form of software variability that captures differing developer in-
tentions and makes them explicit. Such conflict-induced variability
exposes multiple behaviors, which can be systematically explored
and analyzed. Based on these analyses, developers can make in-
formed decisions to eventually bind or eliminate conflict-induced
variability, thereby shifting from time-consuming resolution of
every individual conflict to deferred bulk conflict resolution.

Our approach to realize this research vision is to leverage con-
cepts and techniques from research on software product lines, yet
without the need to adopt rigorous product-line development pro-
cesses. In a nutshell, merge conflicts whose resolution is to be de-
ferred shall be transparently converted to conflict-induced variabil-
ity, while developers may continue working on individual projec-
tions of the integrated version. The binding of accumulated conflict-
induced variability, i.e., conflict resolution, shall be informed by
adapting concepts from software product-line analysis.

In the sequel, we motivate our novel paradigm through a more
detailed analysis of the deficiencies of the state-of-the-art (Sect. 2),
present our research goals together with an illustration of our ap-
proach (Sect. 3), outline future research steps (Sect. 4), and critically
reflect our vision with concluding remarks (Sect. 5).

2 State-of-the-Art
Status quo. The common way of software merging is three-way-
merging, which combines two alternative versions 𝑉𝑜 (“ours”) and
𝑉𝑡 (“theirs”) of a development artifact, originating from a common
version 𝑉𝑏 (“base”), into a merged artifact 𝑉𝑚 [11]. For each change
in 𝑉𝑜 and 𝑉𝑡 , a merge decision needs to be taken on whether the
change shall be incorporated into𝑉𝑚 . While certainmerge decisions
can be taken automatically by consulting the common ancestor, con-
flicts arise when concurrent changes are incompatible. A multitude
of different notions of incompatible have been proposed, typically
coupled with a concrete technique for conflict detection [30]. So-
phisticated techniques work on structural [3, 28] or semantic [33,
38] representations, with the goal of maximizing conflict detection
accuracy and minimizing the number of merge conflicts that need
to be handled by the developer. On an organizational level, methods
were proposed to prevent merge conflicts through early conflict
detection and raising conflict-awareness [9, 17]. However, decades
of research on conflict detection and prevention have had limited
to no impact in practice [18, 34]. Nowadays, mainstream version
control systems such as Git uniformly treat all versioned artifacts as

https://orcid.org/0009-0002-2135-1136
https://orcid.org/0000-0002-9881-9748
https://orcid.org/0009-0004-8745-7800
https://orcid.org/0000-0002-2582-5557
https://doi.org/10.1145/3786582.3786840
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786582.3786840

ICSE-NIER ’26, April 12–18, 2026, Rio de Janeiro, Brazil Manuel Ohrndorf, Alexander Boll, Roman Bögli, and Timo Kehrer

text, with conflicts being detected as differences in corresponding
parts (i.e., lines of text) of 𝑉𝑜 , 𝑉𝑡 , and 𝑉𝑏 . Conflicts are externalized
as conflicting chunks [8, 21] in a tentative merge result supposed
to be post-processed by the developer. Interestingly, the recent
version control system (VCS) Jujutsu [47] represents conflicts as
first-class objects embedded in commits, allowing a version history
to advance despite unresolved conflicts. While still in its infancy
and far from treating conflicts as analyzable variability, it consti-
tutes a first basic approach by decoupling conflict detection from
conflict resolution.

Machine learning as a game changer? More recently, the
research focus has gradually shifted from conflict detection to con-
flict resolution. Empirical studies have been conducted to gain
deeper insights into the nature of merge conflicts and how devel-
opers resolve them in practice, suggesting that the vast majority
of chunk resolutions found in practice can be derived from a fixed
set of conflict resolution patterns representing rather simple rear-
rangements of conflicting lines of code [8, 21, 22, 32, 39, 46, 49]. A
number of machine learning-based approaches have begun fram-
ing merge conflict resolution as a classification problem, where
historical conflict resolutions are used as training data for super-
vised learning [1, 14, 12, 41, 45]. A few papers started to explore
GenAI models to generate conflict resolutions beyond a fixed set of
resolution patterns [13, 50]. To date, however, the best performing
conflict resolution approaches achieve an accuracy of about 75%,
yet on narrow benchmark datasets and by offering limited to no
insights on the decision-making.

Motivation of the proposed paradigm shift. We summarize
two major shortcomings that motivate our paradigm shift: (i) Virtu-
ally all merge techniques assume a versioning workflow in which
conflicts must be resolved as soon as they occur during a merge
attempt. Since the accuracy of automated techniques is not yet
sufficient to trust fully automated conflict resolutions blindly, devel-
opers must therefore continue to review and decide on resolutions
themselves. In other words, merely maturing existing techniques
within standard versioning workflows is unlikely to eliminate the
frequent and time-consuming interruptions caused by merge con-
flicts; (ii) Conflicts are typically addressed one by one, relying on
local syntactic information from the conflicting chunks, or simple
high-level characteristics of a merge commit. However, conflicts
are not analyzed in a broader context: neither the impact of po-
tential resolutions on program behavior nor the interdependencies
between conflicts are taken into account. As a result, consistent
decisions across larger sets of conflicting chunks are not supported.

3 Research Vision
Research goals. To realize our vision that (i) overcomes the dogma
of immediate conflict resolution and (ii) mitigates the limitations of
isolated conflict resolution, we devise two research goals:

RG1: Instead of enforcing time-consuming conflict resolutions
upon each merge attempt, we aim to decouple the integration of
changes from conflict resolution by temporarily tolerating conflicts.
While the conflicts may be resolved later, continuous development
on working copies shall be possible in the meantime.

RG2: By centrally accumulating conflict-induced variability, which
may be analyzed at the repository site, we aim at synthesizing

informed conflict resolution recommendations and guided explo-
ration of resolution spaces, thereby facilitating effective bulk con-
flict resolution upon request.

Overview of envisioned workflows. A high-level overview
of how we envision to split the classical workflow of optimistic
versioning into two separate workflows is shown in Fig. 1. We focus
on the logical steps of read, modify, merge and write, which may
include minor sub-steps depending on the instantiation of the opti-
mistic versioning model (e.g., write = commit + push in a distributed
VCS such as Git). In terms of the development workflow (Fig. 1, left),
a group of developers (e.g., Alice and Bob) may read a development
artifact𝑉 from a central repository and concurrently edit the work-
ing copies, leading to revisions 𝑉 ′ and 𝑉 ′′, respectively (1). They
may write their changes to the repository as usual, as long as no
conflicts occur (2). As opposed to traditional workflows, writing
changes is even possible in case of conflicts, supported by a novel
import function turning conflicts into conflict-induced variability (3).
While conflict-induced variability is accumulated centrally in the
integrated version 𝑉∪, both Alice and Bob may continue to work
on projections (𝑉𝜋,𝐴 and𝑉𝜋,𝐵), which may be consolidated to expose
a minimum of divergences (4). Other developers (e.g., Sally) may
export and modify a projection that reflects any consolidated state
(5). The conflict resolution workflow (Fig. 1, right) covers the merg-
ing step of the traditional workflow. Instead of forcing a conflict
resolution upon each write attempt, conflict resolution assistance
may be requested at any point in time. In Fig. 1, we illustrate a non-
interactive merge approach. Conflict resolution recommendations
that bind all conflict-induced variability are generated centrally (1),
and developers may pick the most suitable alternative (2).

Illustration of the approach. Consider the example in Fig. 2,
which shows the evolution of a fragment of a simple graph library
written in Java. The base version has been concurrently modified
by Alice and Bob. Alice modifies class Edge such that edges can
be immutable, while Bob adds support for thread-safety through
locking. In addition, Alice refactors the method equals of class
Edge, whereas Bob assumes graphs to be directed and therefore
also modifies the equals method. A merge attempt in a classical
VCS yields three conflicts (referred to as 𝐶1, 𝐶2, and 𝐶3 in Fig. 3),
refuses the write attempt and asks for a manual conflict resolution.

On the contrary, our solution shall transfer the conflicts into
conflict-induced variability. This happens in the background, hidden
from the developers, and we may follow the idea of annotation-
based software product lines [2] for a suitable internal representa-
tion. Accumulated conflict-induced variability may then be resolved
at any point in time. In essence, each conflict-induced variation
point requires selecting one of its options. Assume that a merge is
requested for the integrated repository version shown in Fig. 3. For
each of the three conflicts, a canonical resolution [8] would be to
accept either Alice’s (A) or Bob’s (B) modification, constituting a
conflict resolution space of 23 = 8 variants (cf. table in Fig. 3). A
typical product-line analysis is to check the well-formedness of the
derivable variants [42]. One way to do this in a straightforward
variant-by-variant fashion is to generate each variant and check
whether it compiles. In our example, 4 out of the 8 variants do not
compile as the constructor refers to an undeclared instance variable.
The remaining 4 variants can run against the test suite, which has
been extended by Alice. Note that, contrary to Bob’s working copy,

Turning Merge Conflicts Into Conflict-Induced Variability ICSE-NIER ’26, April 12–18, 2026, Rio de Janeiro, Brazil

write

Repository

Alice Bob

3

import

Repository

Alice Bob

4 Repository

Alice Bob

5 Repository

Alice Sally

1

readread

Repository

Alice Bob

2

write export
read

modify

consolidate

Repository

Merge
request

Merge
proposals

Repository

Merge
decision

Alice, Bob or Sally Alice, Bob or Sally

1 2

Development workflow: Conflict resolution workflow:RG1 RG2

Figure 1: Traditional workflow of optimistic versioning split into two logically decoupled workflows. The development workflow
(left) covers the conceptual steps read, modify, and write, whereas merge is extracted to the conflict resolution workflow (right).

Base version� �
1 class Edge {
2 Node a, b;
3

4

5 Edge(Node a, Node b) {
6 this . a = a ; this . b = b;
7 }
8

9

10 boolean equals(Edge e) {
11 return a == e .a && b == e.b
12 || a == e .b && b == e.a ;
13 }
14 }
15

16 void testEquals () {
17 Node a, b = ...;
18 Edge edge = new Edge(a,b);
19 assertEquals (edge,edge) ;
20 }� �

Alice’s version� �
class Edge {
Node a, b;
boolean immutable;

Edge(Node a, Node b) {
this . a = a ; this . b = b;
immutable = false ;

}

boolean equals(Edge e) {
return a . equals (e . a) && b.equals(e .b)

|| a . equals (e .b) && b.equals(e . a) ;
}

}

void testEquals () {
// unchanged
Edge opposite = new Edge(b,a);
assertEquals (edge,opposite) ;

}� �

Bob’s version� �
class Edge {
Node a, b;
boolean locked;

Edge(Node a, Node b) {
this . a = a ; this . b = b;
locked = false ;

}

boolean equals(Edge e) {
return a == e .a && b == e.b;

}
}

void testEquals () {
// unchanged

}

� �
Figure 2: Example: A fragment of a simple graph library, concurrently modified by Alice and Bob.

C1.A

C1.B

C2.A

C2.B

C3.A

C3.B

C1

C2

C3

Figure 3: Sketch of a problem-solution pair: conflict-induced
variability (top, left), and recommendation of conflict resolu-
tions (bottom, right).

the integrated test fails for variants 2 and 8 because Bob’s assump-
tion of working with directed graphs does not pass the test. Thus,
a reasonable ordering of merge recommendations would rank the
remaining two variants 1 and 7 on top. The only decision that needs
to be taken is whether we want to support immutable or lockable
graphs, leading to consistent merge resolutions for 𝐶1 and 𝐶2.

4 Future Plans
Our research methodology follows design-science principles [16],
where conceptual solutions that generalize beyond the simple ex-
ample presented in the previous section are realized as research pro-
totypes and empirically evaluated through controlled experiments.
Technical challenges shall be addressed iteratively as follows:

Step 1: Foundations of conflict-induced variability. In this
step, we consider the basic case of turning merge conflicts into
conflict-induced variability, assuming that conflicting changes have
been applied on a clean base version that does not yet comprise
conflict-induced variability. In order to conduct experiments as
early as possible, we first aim at a generic solution that reuses main-
stream technologies as far as possible. As for conflict detection, a
basic implementation shall resort to line-based merging capabilities
as offered by, e.g., Git. Conflict markers comprised by a tentative
merge shall be transformed into preprocessor macros serving as
annotations that capture conflict-induced variability, and projec-
tions may be obtained by setting the desired macro variables and

ICSE-NIER ’26, April 12–18, 2026, Rio de Janeiro, Brazil Manuel Ohrndorf, Alexander Boll, Roman Bögli, and Timo Kehrer

running the preprocessor. Subsequently, we will consider language-
specific solutions that exploit the syntactic structure of development
artifacts, adopting sophisticated variability mechanisms such as
variational abstract syntax trees which facilitate syntactic reasoning
over conflict-induced variability in terms of family-based analyses
(see steps 3 and 4).

Step 2: Accumulation of conflict-induced variability. In this
step, we study the case of accumulating conflict-induced variabil-
ity over a sequence of deferred merge conflict resolutions. While
available merge algorithms cannot be applied directly as the latest
repository version is typically “polluted” by conflict-induced vari-
ability, a 3-way merging scenario shall be established by a novel
approach to which we refer as projectional 3-way merging, inspired
by the notion of projectional editing in filtered software product
lines [20, 40]. The idea is to synthesize an “artificial base version”
from the latest integrated version by eliminating all conflict-induced
variability, using the projection function developed in step 1. A par-
ticular challenge is to keep conflict-induced variability concise,
which we aim to achieve by consolidating working copies which
can be viewed as a generalization of classical merging: Instead of
unifying the divergent variants 𝑉𝑜 and 𝑉𝑡 to a common successor
version 𝑉𝑚 (cf. Sect. 2), each variant gets its own successor version
𝑉 ′
𝑜 and 𝑉 ′

𝑡 , and these consolidated versions should have more com-
monalities than before [35, 36]. Moreover, we anticipate that some
conflicts should still be resolved immediately, e.g., those arising
from non-local refactorings or other complex restructurings [25,
26] that may generate large amounts of related conflicts [15], where
accumulating unresolved conflicts is undesirable.

Step 3: Non-interactive conflict resolution. In this step, we
follow a non-interactive merging approach by generating conflict
resolution recommendations. The goal is to generate a set of vari-
ants in which the conflict-induced variability is resolved and which
are ranked according to their suitability. Initially, we adopt a variant-
by-variant approach as illustrated in Fig. 3: for each distinct com-
bination of conflict-induced variation points, a variant is gener-
ated and assessed as a merge candidate. Since recommendations
are produced at the repository site, all stages of a CI pipeline can
be exploited. We stage static and dynamic analyses sequentially,
filtering non-promising variants early with static checks and for-
warding only promising ones to more expensive dynamic analyses.
Subsequently, we tackle the scalability challenges from the com-
binatorial explosion of derivable variants, and move beyond the
variant-by-variant approach by adopting family-based analyses
from software product lines [42]. Building on variability-aware
type checking [23], we propose shifting conflict-induced variability
binding from compile time to runtime, leveraging variability-aware
execution results [24, 35] (e.g., family-based tests) to better evaluate
merge candidates.

Step 4: Interactive exploration of resolution spaces. Our
hypothesis is that we can significantly reduce the number of merge
candidates by taking a few merge decisions interactively before
switching to non-interactive conflict resolution. The goal is to guide
the developer through the merge process by asking for a minimal
number of merge decisions while maximizing the reduction of the
conflict resolution space. This shall be achieved by propagating
merge decisions and by optimizing the conflict resolution order.
Complementary, we aim to further reduce interactions by grouping

decisions corresponding to changes of transactional development
tasks such as bug fixes or feature additions [37], so that a single
decision resolves all conflicts in a group.

Step 5: Empirical evaluation. As we are interested in how dif-
ferent factors influence the nature of accumulated conflict-induced
variability and the effectiveness of semi-automated bulk conflict
resolution, we strive for an evaluation strategy that can be applied
to early research prototypes from the very beginning, using a con-
trolled experiment setting [48]. To this end, we will simulate the
evolution of real-world projects using our methodology. Inspired
by recent studies on merge conflict resolution [8, 21], we extract
sequences of conflict scenarios from merge commits in open-source
repositories. These commits allow us to restore the original sit-
uation, replay the evolution with accumulated conflict-induced
variability, and use the actual merge commits as ground truth for
assessing our resolution strategies. For our simulation-based exper-
iments, we build on the curated project list of Cavalcanti et al. [10]
(based on previous work of Munaiah et al. [31] and Beller et al. [5]),
which fulfills key requirements such as diversity in size, developer
activity, and application domains, as well as the adoption of contin-
uous integration. We refine this dataset by considering historical
evolutions rather than isolated merge commits, and extend it with
the broader dataset of Boll et al. [8]. A pilot reproducibility study
on the extended dataset confirms prior findings that most conflict
resolutions can be canonically derived from conflicting chunks,
supporting our assumption that conflict-induced variability can be
effectively bound in bulk conflict resolution.

5 Concluding Remarks
Decades ago, the software engineering community acknowledged
that inconsistencies are an inevitable by-product of collaborative
development and must be tolerated temporarily rather than imme-
diately eliminated [4, 19]. We argue that merge conflicts deserve
the same treatment: instead of enforcing immediate conflict resolu-
tion upon each merge attempt, we advocate for conflict tolerance
as a means to reduce frequent interruptions and enable deferred
and effective bulk conflict resolution upon request. We outlined
how such a paradigm shift could be realized by treating merge
conflicts as conflict-induced variability, drawing on ideas from
software product-line engineering without adopting product-line
processes [27, 7]. By turning merge conflicts into conflict-induced
variability, we also reveal new opportunities for research by unify-
ing software version and variability management [6, 43].

However, we acknowledge that many questions remain unan-
swered. From a tooling perspective, it is unclear how the proposed
techniques can be realized on top of existing tools and integrated
into the envisioned workflows, and controlled experiments alone
will not suffice to fully assess all implications of the proposed para-
digm shift. Ultimately, field studies with more mature prototypes
will be required to evaluate potential negative effects and organiza-
tional consequences. Our overarching goal is to understand when
deferring conflict resolution is beneficial and when immediate res-
olution is the preferred strategy. To this end, our approach also
allows developers to fall back to conventional merging and directly
resolve conflicts as they occur.

Turning Merge Conflicts Into Conflict-Induced Variability ICSE-NIER ’26, April 12–18, 2026, Rio de Janeiro, Brazil

References
[1] W. Aldndni, N. Meng, and F. Servant. 2023. Automatic prediction of developers’

resolutions for software merge conflicts. Journal of Systems and Software, 206.
[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines: Concepts and Implementation. Springer.
[3] Sven Apel, Olaf Leßenich, and Christian Lengauer. 2012. Structured merge

with auto-tuning: balancing precision and performance. In Proc. Int’l Conf. on
Automated Software Engineering, 120–129.

[4] Robert Balzer. 1991. Tolerating inconsistency (software development). In Proc.
Int’l Conf. on Software Engineering, 158–159.

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests
broke the build: an explorative analysis of travis ci with github. In Proc. Int’l
Working Conf. on Mining Software Repositories. IEEE, 356–367.

[6] Thorsten Berger, Marsha Chechik, Timo Kehrer, and Manuel Wimmer. 2019.
Software evolution in time and space: unifying version and variability man-
agement (dagstuhl seminar 19191). Dagstuhl Reports, 9, 5, 1–30.

[7] Roman Bögli, Alexander Boll, Alexander Schultheiß, and Timo Kehrer. 2025.
Beyond software families: community-driven variability. In Proc. Int’l Conf. on
the Foundations of Software Engineering: Ideas, Visions and Reflections, 571–575.

[8] Alexander Boll, Yael Van Dok, Manuel Ohrndorf, Alexander Schultheiß, and
Timo Kehrer. 2024. Towards semi-automated merge conflict resolution: is it
easier than we expected? In Proc. Int’l Conf. on Evaluation and Assessment in
Software Engineering, 282–292.

[9] Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2013. Early de-
tection of collaboration conflicts and risks. IEEE Trans. on Software Engineering,
39, 10, 1358–1375.

[10] Guilherme Cavalcanti, Paulo Borba, Georg Seibt, and Sven Apel. 2019. The
impact of structure on software merging: semistructured versus structured
merge. In Proc. Int’l Conf. on Automated Software Engineering, 1002–1013.

[11] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. ACM Computing Surveys, 30, 2, 232–282.

[12] ElizabethDinella, ToddMytkowicz, Alexey Svyatkovskiy, Christian Bird,Mayur
Naik, and Shuvendu Lahiri. 2023. DeepMerge: Learning to Merge Programs.
IEEE Trans. on Software Engineering, 49, 4, (Apr. 2023), 1599–1614. Retrieved
Feb. 14, 2025 from.

[13] Jinhao Dong, Qihao Zhu, Zeyu Sun, Yiling Lou, and Dan Hao. 2023. Merge Con-
flict Resolution: Classification or Generation? In Proc. Int’l Conf. on Automated
Software Engineering, 1652–1663. Retrieved Feb. 14, 2025 from.

[14] Paulo Elias, Heleno De S. Campos, Eduardo Ogasawara, and Leonardo Gresta
Paulino Murta. 2023. Towards accurate recommendations of merge conflicts
resolution strategies. Information and Software Technology, 164, 107332.

[15] Max Ellis, Sarah Nadi, and Danny Dig. 2022. Operation-based refactoring-aware
merging: an empirical evaluation. IEEE Trans. on Software Engineering, 49, 4,
2698–2721.

[16] Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and Maria
Teresa Baldassarre. 2020. How software engineering research aligns with design
science: a review. Empirical Software Engineering, 25, 2630–2660.

[17] H Christian Estler, Martin Nordio, Carlo A Furia, and Bertrand Meyer. 2014.
Awareness and merge conflicts in distributed software development. In Proc.
Int’l Conf. on Global Software Engineering, 26–35.

[18] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey
Clemm, Walter Tichy, and Darcy Wiborg-Weber. 2005. Impact of software
engineering research on the practice of software configuration management.
ACM Trans. on Software Engineering and Methodology, 14, 4, 383–430.

[19] Anthony CW Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer, and
Bashar Nuseibeh. 1994. Inconsistency handling in multiperspective specifica-
tions. IEEE Trans. on Software Engineering, 20, 8, 569–578.

[20] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander
Egyed. 2015. The ECCO Tool: Extraction and Composition for Clone-and-Own.
In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 665–668.

[21] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek. 2020.
On the Nature of Merge Conflicts: A Study of 2,731 Open Source Java Projects
Hosted by GitHub. IEEE Trans. on Software Engineering, 46, 8, 892–915.

[22] Heleno de S. Campos Junior, Gleiph Ghiotto L. de Menezes, Márcio de Oliveira
Barros, André van der Hoek, and Leonardo Gresta Paulino Murta. 2024. How
code composition strategies affectmerge conflict resolution? Journal of Software
Engineering Research and Development, 12, 1.

[23] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. 2012. Type
Checking Annotation-Based Product Lines.ACMTrans. on Software Engineering
and Methodology, 21, 3, 14:1–14:39.

[24] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven
Apel, Tillmann Rendel, and Klaus Ostermann. 2012. Toward Variability-Aware
Testing. In Proc. Int’l Workshop on Feature-Oriented Software Development, 1–8.

[25] Timo Kehrer. 2015. Calculation and propagation of model changes based on
user-level edit operations: a foundation for version and variant management in
model-driven engineering. Ph.D. Dissertation. University of Siegen.

[26] TimoKehrer, Abdullah Alshanqiti, and ReikoHeckel. 2017. Automatic inference
of rule-based specifications of complex in-place model transformations. In Proc.
Int’l Conf. on Theory and Practice of Model Transformations, 92–107.

[27] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian
Bittner. 2021. Bridging the gap between clone-and-own and software product
lines. In Proc. Int’l Conf. on Software Engineering: New Ideas and Emerging
Results, 21–25.

[28] Olaf Leßenich, Sven Apel, and Christian Lengauer. 2015. Balancing precision
and performance in structured merge. Proc. Int’l Conf. on Automated Software
Engineering, 22, 3, 367–397.

[29] Jon Loeliger and Matthew McCullough. 2012. Version Control with Git: Powerful
tools and techniques for collaborative software development. O’Reilly Media, Inc.

[30] Tom Mens. 2002. A state-of-the-art survey on software merging. IEEE Trans.
on Software Engineering, 28, 5, 449–462.

[31] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating github for engineered software projects. Empirical Software Engineer-
ing, 22, 3219–3253.

[32] Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An analysis of merge con-
flicts and resolutions in git-based open source projects. Computer Supported
Cooperative Work, 27, 741–765.

[33] Hung Viet Nguyen, My Huu Nguyen, Son Cuu Dang, Christian Kästner, and
Tien N Nguyen. 2015. Detecting semantic merge conflicts with variability-
aware execution. In Proc. Int’l Symposium on Foundations of Software Engineer-
ing (FSE), 926–929.

[34] Stack Overflow. 2022. Stack overflow developer survey 2022 - version control
systems. Accessed on 25 Sep 2025. Retrieved Feb. 28, 2025 from https://survey
.stackoverflow.co/2022/#section-version-control-version-control-systems.

[35] Dennis Reuling, Udo Kelter, Johannes Bürdek, and Malte Lochau. 2019. Au-
tomated n-way program merging for facilitating family-based analyses of
variant-rich software. ACM Trans. on Software Engineering and Methodology,
28, 3, 1–59.

[36] Dennis Reuling, Malte Lochau, and Udo Kelter. 2019. From imprecise n-way
model matching to precise n-way model merging. J. Object Technol., 18, 2, 8–1.

[37] Maik Schmidt, Sven Wenzel, Timo Kehrer, and Udo Kelter. 2009. History-based
merging of models. In Proc. Int’l Workshop on Comparison and Versioning of
Software Models, 13–18.

[38] Danhua Shao, Sarfraz Khurshid, and Dewayne E Perry. 2009. SCA: a semantic
conflict analyzer for parallel changes. In Proc. Int’l Symposium on Foundations
of Software Engineering (FSE), 291–292.

[39] Bowen Shen, Cihan Xiao, Na Meng, and Fei He. 2021. Automatic detection
and resolution of software merge conflicts: are we there yet? arXiv preprint
arXiv:2102.11307.

[40] Stefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wą-
sowski. 2016. Concepts, Operations, and Feasibility of a Projection-Based Varia-
tion Control System. In Proc. Int’l Conf. on Software Maintenance and Evolution.
IEEE, 323–333.

[41] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz,
Elizabeth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K.
Lahiri. 2022. Program merge conflict resolution via neural transformers. In
Proc. Int’l Symposium on Foundations of Software Engineering (FSE), 822–833.

[42] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Computing Surveys, 47, 1, 6:1–6:45.

[43] Thomas Thüm, Leopoldo Teixeira, Klaus Schmid, EricWalkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
2019. Towards efficient analysis of variation in time and space. In Proc. Int’l
Systems and Software Product Line Conference, 57–64.

[44] Walter F. Tichy. 1982. Design, Implementation, and Evaluation of a Revision
Control System. In Proc. Int’l Conf. on Software Engineering (ICSE), 58–67.

[45] Marina Bianca Trif and Radu Razvan Slavescu. 2021. Towards Predicting Merge
Conflicts in Software Development Environments. In Proc. Int’l Conf. on Intelli-
gent Computer Communication and Processing (ICCP), 251–256.

[46] Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel. 2022. Chal-
lenges of Resolving Merge Conflicts: A Mining and Survey Study. IEEE Trans.
on Software Engineering, 48, 12, 4964–4985.

[47] Martin von Zweigbergk. 2026. Jujutsu - version control systems. Accessed on
07 Jan 2026. https://jj-vcs.dev/.

[48] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,
and Anders Wesslén. 2012. Experimentation in software engineering. Springer
Science & Business Media.

[49] Ryohei Yuzuki, Hideaki Hata, and Kenichi Matsumoto. 2015. How we resolve
conflict: an empirical study of method-level conflict resolution. In Proc. Int’l
Workshop on Software Analytics. IEEE, 21–24.

[50] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K
Lahiri. 2022. Using pre-trained language models to resolve textual and semantic
merge conflicts. In Proc. Int’l Symp. on Software Testing and Analysis, 77–88.

https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems
https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems
https://jj-vcs.dev/

	Abstract
	1 Introduction
	2 State-of-the-Art
	3 Research Vision
	4 Future Plans
	5 Concluding Remarks

