
Towards Semi-Automated Merge Conflict Resolution:
Is It Easier Than We Expected?

Alexander Boll∗
University of Bern

Switzerland

Yael van Dok∗
University of Bern

Switzerland

Manuel Ohrndorf∗
University of Bern

Switzerland

Alexander Schultheiß
Paderborn University

Germany

Timo Kehrer
University of Bern

Switzerland

ABSTRACT
In version control systems such as Git, concurrent modifications on
the same artifacts can cause merge conflicts that may disrupt the
development workflow by requiring manual intervention. While
research on software merging focused on sophisticated techniques
that hardly had any impact in practice, we present an empirical
feasibility study on semi-automated conflict resolution using a fixed
set of only a few language-agnostic conflict resolution patterns. In
a large-scale quantitative analysis, we simulate the performance of
our hypothetical conflict resolution strategy by classifying 131,154
merge conflict resolutions of a diverse sample of 10,000 GitHub
projects according to these resolution patterns. We shed light on
the derivability of merges on multiple levels of granularity: the
conflicting merge commit, its conflicting files and their individual
conflicting chunks. 87.9% of chunks are derivable individually, while
34.5% of merges are derivable as a whole. Interestingly, however,
by inspecting potential factors affecting derivability, we observe
that there are stronger correlations considering individual files
than considering the entire merge. A short yet preliminary an-
swer to whether semi-automated conflict resolution is easier than
we expected is: yes, it might be, particularly if we use the right
level of granularity for proposing conflict resolutions. Through
our comprehensive analysis, we aspire to bridge the gap between
academic innovations on sophisticated merge techniques and real-
world merge conflict scenarios, laying the groundwork for more
effective and widely accepted automatic merge tools.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development; • General and reference→ Empirical studies.

KEYWORDS
merging, conflict resolution, derivability, merge generator, merge
recommendation, git mining, empirical study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2024, 18–21 June, 2024, Salerno, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Alexander Boll, Yael van Dok, Manuel Ohrndorf, Alexander Schultheiß,
and Timo Kehrer. 2023. Towards Semi-Automated Merge Conflict Reso-
lution: Is It Easier Than We Expected?. In Proceedings of The 28th Inter-
national Conference on Evaluation and Assessment in Software Engineer-
ing (EASE 2024). ACM, New York, NY, USA, 10 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
Version Control Systems (VCS) are an integral tool for software
development in companies or open-source communities. Following
the paradigm of optimistic versioning, several working copies of the
same development artifact, e.g., a source code file, may be edited
independently without the need for being locked and unlocked.
Software merging is the most fundamental operation supporting
such optimistic versioning by reconciling concurrent changes to
multiple working copies of a shared development artifact [23].

It has been reported that 10-20% of merge attempts encounter a
failure, and failure rates can approach even 50% in some cases [8,
18, 34]. Thus, merge conflicts bother developers in their daily work
and hamper continuous integration [16]. Virtually everybody who
has worked with Git, or any other mainstream VCS, has encoun-
tered conflict markers in a tentative merge that results from a failed
merge attempt, as illustrated in Fig. 1 (file main.py (tentative)
in the middle). In general, a tentative merge can contain multiple
so-called conflicting chunks [16], a single one is depicted in the ten-
tative merge in Fig. 1. All lines between <<<<<<< main (HEAD) and
|||||||, in this case line 3, represent the changes in the repository
branch we merge into (ours). Changes in the branch we are trying
to merge (theirs in line 5) and the base version of both branches of
the conflicting file (base in line 7) are similarly delimited by markers.
The resolution of the conflict is left to the developers’ discretion by
editing the respective file.

Research has tackled the challenges of software merging for
decades, with the goal of minimizing manual effort. The proposals
can roughly be classified into techniques that aim at (i) increasing
the accuracy of conflict detection by lifting the unstructured, line-
based merging of today’s mainstream VCSs to a (semi-)structured,
syntactic [21–23, 33] or even semantic level [23, 29], (ii) preventing
merge conflicts by early conflict detection [8, 17, 18] and raising
conflict-awareness [14], and (iii) pursuing a semi-automated con-
flict resolution by relying on language-specific conflict resolution

∗These authors contributed equally to the paper.

https://orcid.org/0000-0002-9881-9748
https://orcid.org/0009-0006-0084-7414
https://orcid.org/0009-0002-2135-1136
https://orcid.org/0000-0002-1509-1449
https://orcid.org/0000-0002-2582-5557
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2024, 18–21 June, 2024, Salerno, Italy Boll, et al.

main

dev

main.py (tentative)
1 def main():
2 <<<<<<< main (HEAD)
3 print(‘Hi!’)
4 |||||||
5 print(‘Hello!’)
6 =======
7 print(‘Hey!’)
8 >>>>>>> dev
9

10 main()

main.py (base)
1 def main():
2 print(‘Hello!’)
3
4 main()

main.py (ours) (Alice)
1 def main():
2 print(‘Hi!’)
3
4 main()

main.py (theirs) (Bob)
1 def main():
2 print(‘Hey!’)
3
4 main()

main.py (merged)
1 def main():
2 print(‘Hey!’)
3
4 main()

baseLegend

version graph edge

merge flow

ours

theirs theirs

Figure 1: An example of collaborative development on two branches:main and dev. A Python file is edited in both branches,
leading to a merge conflict. Non-conflicting code is shown in green, conflicting code in red, Git’s merge markers in gray.

patterns [7, 10]. However, it has long been recognized that sophis-
ticated merge techniques proposed in the literature had almost no
impact [15], and the situation has shown little improvement thus
far [16]. For the time being, we accept the status quo that merge
facilities provided by mainstream VCSs are undisputed in practice.

A few empirical studies have been conducted with the aim of
better understanding the nature of merge conflicts and how devel-
opers deal with them in practice [16, 24, 25, 28, 32, 34]. In particular,
Yuzuki et al. [32] report that, for conflicting chunks caused by con-
current changes on a single line of code, developers adopted one
of the alternatives (i.e., ours or theirs) in 99% of the cases without
any modification. Ghiotto et al. [16] found that many conflicting
chunks encompass all lines of code present in the merged result.
They suggest that rearranging the code lines of chunks may be
helpful for conflict resolution, where the merge tool takes the role
of a recommender and proposes such rearrangements.

To evaluate the feasibility of such a recommender, we conserva-
tively focus on those conflict resolutions for which we hypothesize
that their generation could be feasible in practice. Intuitively, we
consider the resolution of a conflicting chunk to be derivable if it
can be directly constructed from the conflicting parent versions
or their base version without any modification (more details in
Sec. 3.1.1). To investigate this intuition in detail, we define a fixed
set of language-agnostic conflict resolution patterns where one of
the patterns can resolve a single chunk. This yields a classification
scheme that classifies conflicting chunks into derivable and non-
derivable ones. We aggregate all observations made for individual
chunks and their surrounding non-conflicting lines of code (i.e.,
context) to the level of conflicting files and merge commits. File
or merge commits are derivable if all their conflicting chunks are
derivable and their context remains unchanged (stable).

Based on our precise yet simple notion of derivable conflict res-
olution, we seek to answer our overall research question through a
large-scale simulation and quantitative analysis of merge commits
extracted from the development histories of open-source projects
hosted on GitHub. We followed established sampling criteria for
gathering a large set of 10,000 heterogeneous yet representative
projects. We replayed the merge commits of these projects’ devel-
opment histories. Using the merged parents and their common
ancestor, we called Git’s three-way-merge facility to check whether
the original merge attempt led to a conflict, while the merge com-
mit itself served as ground truth of how a merge conflict has been
resolved. Based on this information, we investigate the derivability
of chunk resolutions and merge commits, and how the derivability

is affected by a number of variables, including general project char-
acteristics, the programming language of source code artifacts, and
previously used resolution strategies within the repository.

In a nutshell, the derivability rates are promising but substan-
tially vary between the different levels of granularity wrt. individual
conflicting chunks, files and commits. On the most fine-grained
level, we found 87.9% of conflicting chunks to be derivable, with
minor differences among development artifacts of different kinds
and programming languages. On the most coarse-grained level,
we found 34.5% of merge commits to be derivable, with unstable
context and increasing numbers of chunks per conflicting merge
being the major factors with a negative impact on the derivability.
While these numbers largely confirmed our hypotheses, we got
some interesting new insights on the granularity level of conflicting
files. Namely, conflicting files receive a rather homogeneous treat-
ment wrt. our conflict resolution patterns, meaning that developers
tend to choose one resolution type per file, even for files with many
conflicting chunks. Further, by inspecting influencing factors wrt.
derivability, we found the strongest correlations on the level of files.
This is an indicator that predicting an automated resolution might
be feasible for files. Thus, to give a short and preliminary answer
to “is semi-automated conflict resolution easier than we expected?” :
Yes, it might indeed be easier, particularly if we use the right level
of granularity for proposing conflict resolutions.

Our insights pave the way for further research. Through our
comprehensive analysis, we aspire to bridge the gap between aca-
demic innovations on sophisticated merge techniques and real-
world merge conflict scenarios, laying the groundwork for more
effective andwidely accepted automatic merge tools.We summarize
our contributions as follows:
• A simple and language-agnostic concept of merge commit deriv-
ability which we assume to be feasible in practice;
• an open-source tool, MeGA, for efficiently analyzing thousands
of merge commits wrt. derivability and collecting additional (meta-)
data for further analysis;
• a huge dataset comprising the merge commits of a represen-
tative and heterogeneous collection of 10,000 projects hosted by
GitHub, amounting to 131,154 conflicting merge commits, compris-
ing 837,518 conflicting files;
• a large-scale quantitative analysis of the gathered merge commits
wrt. derivability, the findings of which can be used to inform further
research on constructing an automatic merge recommender;
• A full replication package [1] to reproduce and validate our results.

Towards Semi-Automated Merge Conflict Resolution:
Is It Easier Than We Expected? EASE 2024, 18–21 June, 2024, Salerno, Italy

2 BACKGROUND ON MERGE CONFLICTS
While several conceptual organizations for the version space of soft-
ware artifacts have been proposed in the literature [11], mainstream
VCSs such as Git are based on organizing versions in a directed
acyclic graph, which is commonly known as version graph. A ver-
sion graph is composed of parallel branches that, in turn, consist of
a sequence of revisions (aka. commits).
Fig. 1 shows an exemplary version graph where Alice and Bob col-
laborate on a simple Python greeting program. Initially, Alice imple-
ments a Hello! program in amain.py file and commits it to branch
main (top-left corner). Bob creates a new branch dev and changes the
greeting to Hey!. Concurrently, Alice also changes the greeting on
branch main to Hi!. Thus, two alternatives of the program coexist.

Regardless of whether branches are named or implicit (e.g., a
local copy of a remote branch), branches may eventually be merged
to join the distributed work effort. Conceptually, a merge operation
combines two alternative versions 𝑣1 and 𝑣2 of a development arti-
fact into a merged artifact 𝑣𝑚 [11]. The preferred way of software
merging in the context of version control is three-way merging (cf.
Fig. 1), which consults the common base version 𝑣𝑏 (aka. ancestor
or base) to make certain merge decisions [23].

Merging in Git follows the principle of state-based merging: It de-
termines symmetric differences along three ways (𝑣𝑏 Δ 𝑣1, 𝑣𝑏 Δ 𝑣2,
and 𝑣1 Δ 𝑣2) to identify those parts of the development artifacts
which are (a) the same in all three versions, (b) the same in two ver-
sions, or (c) different in all three versions. The symmetric differences
are determined in a line-based manner, treating all development
artifacts uniformly as text. This way, the common and distinct parts
of a file are represented as line sequences. The merge result 𝑣𝑚
includes all parts of type (a) and all parts of type (b) which differ
from 𝑣𝑏 [20]. All other cases indicate a conflict, meaning a part is
different in all of 𝑣1, 𝑣2, 𝑣𝑏 .
Alice and Bob agree to unify their work, and decide to merge dev
into main. To their displeasure, a merge conflict occurs.

In case of a conflict, Git creates a tentative merge that requires
resolution by a developer. A tentative merge consists of one or
more tentative files that represent concurrently edited files whose
individual parts overlap with respect to the common ancestor (i.e.,
the base version). A tentative file consists of one or more chunks.
Each chunk includes the concurrently edited parts of 𝑣1 and 𝑣2 as
well as the part of 𝑣𝑏 at the location where they overlap. Special
conflict markers [19, 31] are used to indicate the origin (𝑣1, 𝑣2, or
𝑣𝑏) of these parts.

In a three-way merge, Git distinguishes three versions in a chunk
with respect to the branch onwhich themerge operation is executed.
The ours version contains the individual part of the branch onwhich
the merge operation is executed (aka. current branch). The base
version contains the state of the common ancestor in the version
graph (i.e., before changes in branches were made). Lastly, the theirs
version contains the individual part of the branch being merged
into the current branch.
As shown in Fig. 1, Alice and Bob face a conflict in main.py with a
conflicting chunk in Lines 2-8. The chunk has been written directly
into main.py and requires resolution before they can complete the
merge. The chunk contains the conflicting lines print(’Hi!’) (ours),

empty
1 def main():
2
3 main()

theirs
1 def main():
2 print(‘Hey!’)
3
4 main()

unstable context
1 def main():
2 print(‘Hey!’)
3
4 main()
5 print(‘Bye!’)

ours+theirs
1 def main():
2 print(‘Hi!’)
3 print(‘Hey!’)
4
5 main()

base
1 def main():
2 print(‘Hello!’)
3
4 main()

custom chunk
1 def main():
2 print(‘Ciao!’)
3
4 main()

ours
1 def main():
2 print(‘Hi!’)
3
4 main()

Elementary Patterns (derivable)

Compound Patterns (derivable) Custom Resolutions (non-derivable)

Custom resolutions either do not use
elementary or compound patterns (i.e.,
they use custom chunks), and/or their
non-conflicting lines were changed
(i.e., they have unstable context).

base+ours+theirs
1 def main():
2 print(‘Hello!’)
3 print(‘Hi!’)
4 print(‘Hey!’)
5
6 main()Formally:

𝐿𝑒𝑡 𝑪 = 𝒐𝒖𝒓𝒔, 𝒕𝒉𝒆𝒊𝒓𝒔, 𝒃𝒂𝒔𝒆 . 𝑇ℎ𝑒𝑛
𝑪𝒐𝒎𝒑𝒐𝒖𝒏𝒅𝑷𝒂𝒕𝒕𝒆𝒓𝒏𝒔 = 𝒙, 𝒚 |𝒙, 𝒚 ∈ 𝑪, 𝒙 ≠ 𝒚 ∪

𝒙, 𝒚, 𝒛 |𝒙, 𝒚, 𝒛 ∈ 𝑪, 𝒙 ≠ 𝒚, 𝒚 ≠ 𝒛, 𝒛 ≠ 𝒙 .
𝐼𝑡 ℎ𝑜𝑙𝑑𝑠 𝑡ℎ𝑎𝑡 𝑪𝒐𝒎𝒑𝒐𝒖𝒏𝒅𝑷𝒂𝒕𝒕𝒆𝒓𝒏𝒔 = 𝟏𝟐.

Figure 2: Derivable resolution patterns and non-derivable
custom resolutions of main.py of Fig. 1.

print(’Hello!’) (base), and print(’Hey!’) (theirs). Conflict mark-
ers, highlighted gray, identify these components. All other files (not
shown) and code highlighted green were merged without conflict.

Git can automatically resolve concurrent changes in different
locations of a file, but those in the same location require manual
resolving, which can be a tedious and error-prone process. Manual
resolution is supported by modern IDEs and VCS tools that often
present a side-by-side view of the individual versions (i.e., ours,
base, and theirs). While a developer can simply select one of the
conflicting versions (e.g., ours), they may also introduce custom
changes to the conflicting file in order to resolve the merge conflict.
To resolve the conflict in Fig. 1, Alice and Bobmanually editmain.py,
remove all conflict markers and the undesired ours and base version.
They then mark the file as resolved and commit the merge.

3 RESEARCH METHODOLOGY
Striving for our overall goal of exploring the feasibility of a simple
semi-automated merge conflict resolution, we first present our en-
visioned resolution strategy in Sec. 3.1. Thereupon, in Sec. 3.2, we
derive three research questions guiding our empirical study that we
answer through a large-scale quantitative analysis of merge com-
mits extracted from the development histories of Git repositories
hosted on GitHub, as presented in Sec. 3.3.

3.1 Envisioned Conflict Resolution Strategy
We inductively define our hypothetical conflict resolution strat-
egy by first introducing a fixed set of simple patterns for deriving
conflict resolutions on the granularity level of individual chunks,
which we then aggregate to define the derivability of merge com-
mits, accounting for the chunks’ context.

3.1.1 Derivability of Chunk Resolutions. We consider the resolu-
tion of a chunk to be derivable if it can be directly constructed from
the conflicting parent versions or their base version. More precisely,
we define a classification scheme based on the following patterns:

Elementary patterns (derivable). Elementary patterns describe
resolutions where a developer chose exactly one or none of the
alternative parts of a chunk. Thus, we define the four derivable ele-
mentary patterns ours, theirs, base, and empty. We illustrate these

EASE 2024, 18–21 June, 2024, Salerno, Italy Boll, et al.

patterns in the upper part of Fig. 2, which constitute derivable
resolutions of the conflict from our motivating example in Fig. 1.
Here, the patterns correspond to selecting either print(’Hi!’),
print(’Hey!’), print(’Hello!’), or removing conflicting text.

Compound patterns (derivable). Compound patterns comprise
all possible combinations of elementary patterns except the empty
pattern, which is a neutral element wrt. combinations. Thus, a
conflict resolution matches a compound pattern if a developer has
combined the unmodified content of the ours, theirs or base version.
While any ordering of these elementary patterns is permitted, we
do not consider a reshuffling of lines between the patterns due
to the combinatorial explosion of possible options. We consider
their derivation infeasible for a practical, lightweight approach to
semi-automated conflict resolution. Instead, we have a fixed set of
12 compound patterns; the formal definition of this set as well as
two example elements are shown in the lower left part of Fig. 2.

Custom Resolutions (non-derivable). Custom resolutions are
chunk resolutions that cannot be derived using our patterns above.
We classify custom resolutions as non-derivable as it is infeasible to
derive them without additional input from the developer. The lower
right part of Fig. 2 shows a custom resolution on the left, where the
developer replaced the conflicting line with print(’Ciao!’).

3.1.2 Derivability of Merge Commits. While the derivability of all
conflicting chunks of a tentative merge result yields a necessary
precondition for deriving merge commits, we also require that
non-conflicting lines, in the sequel referred to as context, remain
unchanged (stable). This is necessary because, even if all chunk
resolutions are derivable, the actual resolution of a conflict may
take place in the chunks’ surrounding context. The lower right part
of Fig. 2 shows such an example; on the right, line 5 was appended,
rendering the context unstable. To sum up, a merge commit is
derivable if all its chunks are derivable and their context stable.
Otherwise, the merge commit is non-derivable.

3.2 Research Questions
We define three research questions that guide our study.
RQ1: How many conflicting chunk resolutions are derivable, and how
are they distributed over our resolution patterns? Based on Ghiotto
et al.’s findings [16], our hypothesis is that developers choose a
derivable chunk conflict resolution in most cases. With RQ1, we
seek to measure how many chunk resolutions found in the histories
of open-source projects are derivable, and how the resolutions
are distributed over our resolution patterns (cf. Sec. 3.1). If our
hypothesis is confirmed, we can continue with a deeper inspection
of the derivability of entire merge commits.
RQ2:Aremerge commits derivable, and does this vary with an increas-
ing number of conflicting chunks? With RQ2, we seek to measure
how many merge commits comprise only derivable chunk resolu-
tions and how often a chunk’s context is modified during a merge.
Our hypothesis is that the derivability rate of merge commits com-
prising only a single conflicting chunk is lower than the derivability
rate of individual chunks due to the instability of context, the extent
of which is yet an open question. Furthermore, we hypothesize that
the derivability rate drops with an increasing number of chunks,
but it is yet unclear whether this effect can be observed in practice.

Table 1: Overview of our collection of GitHub projects.

projects commits merges conflicted
merge %

sampled
merges

C# 1,000 2,690,761 406,269 54.6 16,611
C 1,000 8,884,850 714,432 43.6 15,015
C++ 1,000 7,308,952 1,126,367 45.6 22,011
Go 1,000 3,211,249 627,271 88.2 13,204
JavaScript 1,000 291,441 35,586 99.3 2,685
Java 1,000 992,236 126,451 65.0 6,023
PHP 1,000 3,044,459 656,015 46.4 20,163
Python 1,000 471,755 66,488 81.5 3,481
Rust 1,000 2,633,980 442,468 60.0 10,609
TypeScript 1,000 3,256,112 440,869 58.1 21,352

total 10,000 32,785,795 4,642,216 64.2 131,154

RQ3: Which quantitative factors influence derivability, and do they
depend on the granularity level of conflicting merges? With RQ3, we
seek to explore which factors might influence the derivability of
merge results on different levels of granularity. Hereby, we hope to
gain insights for constructing heuristics that could later guide auto-
mated merge conflict resolution. Aiming to be language-agnostic,
we limit our analysis to generic factors related to a merge (e.g.,
chunk count, resolution patterns, derivability) and prior repository
history (e.g., length of branches before merges, prior resolution
patterns, number of commits).

3.3 Study Design and Implementation
We seek to answer our research questions through a large-scale
quantitative analysis of merge commits extracted from the histories
of Git repositories on GitHub. In addition to providing richmetadata
for each project, GitHub provides transparency and access to the
version histories of Git repositories, which currently is one of the
most popular and widespread VCSs. For the sake of our empirical
study, we implemented MeGA (MergeGitAnalyzer), a command-
line tool written in Java. It uses GitHub’s REST API [2] to acquire
repositories, and JGit [3], an implementation of Git written in Java,
to run the actual analysis. MeGA is available as an open-source
project and can efficiently analyze thousands of Git histories by
implementing a multi-level parallel processing for repositories,
merge commits and their files. A detailed configuration setup used
for our study is part of our replication package.

3.3.1 GitHub Project Collection. To gather a representative, large-
scale and heterogeneous collection of projects from GitHub, we
followed established sampling techniques based on popularity met-
rics. Specifically, we first selected the ten most popular languages
based on the number of stars received in Q3 2023 according to
GitHut [4]: Python, JavaScript, Go, C++, Java, TypeScript, C, C#,
PHP and Rust. Then, we defined search queries to retrieve reposito-
ries for each programming language according to GitHub’s project
type classification [5], sorting the repositories in descending order
by their number of stars, and collecting the first 1,000 entries. Using

Towards Semi-Automated Merge Conflict Resolution:
Is It Easier Than We Expected? EASE 2024, 18–21 June, 2024, Salerno, Italy

this method, we collected a total of 10,000 projects as study subjects,
an overview of which is given in Tab. 1. We sampled (at most) the
last 100 conflicting merges per project to reduce the bias of projects
with extensive histories.

3.3.2 Merge Commit Simulation and Analysis.

Core AnalysisWorkflow. Sincewe cannot directly analyze conflict
resolutions from a project’s history, we simulate (i.e., replay) merges
from the history and analyze the chosen resolutions.

Given a list of GitHub projects,MeGA searches the entire history
of each project for three-way merge commits to simulate. Merge
commits with more than two parents (aka. octopus merges) are
skipped, as they only constituted about 0.32% of merges found in the
projects. For each merge commit, MeGA determines the involved
parent and base commits and simulates a merge using Git’s default
merging strategy [6].

If the simulated merge contains conflicts, MeGA collects all files
with conflicts (tentative files) and their corresponding committed
version. MeGA then traverses the tentative file and tries to match
the chunk parts (ours, base, theirs) of each chunk and the context
surrounding the chunks within the committed file using a line-
based text equality matching. If a chunk part or context part is
found, the corresponding lines in the committed file are marked
as mapped to the respective part in the tentative file. Once such
a matching has been performed for all chunk and context parts,
MeGA determines whether derivable patterns were used to resolve
the conflicts and whether the context is stable. Compound patterns,
that are permutations of each other, are grouped together byMeGA,
resulting in 4 elementary and 12 compound patterns, see Sec. 3.1.

If all lines of a committed file are mapped, then the context is sta-
ble, and all conflicting chunks have been resolved using a derivable
pattern. This is the case for our example in Fig. 1, where the lines of
the committed file main.py (merged)would be mapped to the ten-
tative file main.py (tentative) as follows: ⟨1⟩ ↦→ ⟨1⟩, ⟨2⟩ ↦→ ⟨7⟩,
⟨3, 4⟩ ↦→ ⟨9, 10⟩. However, non-mapped lines in a committed file
indicate that either context modifications occurred or non-derivable
conflict resolutions were used. Namely, if non-mapped lines are
found between two adjacent context parts or two chunk parts be-
longing to the same chunk, they indicate a non-derivable conflict
resolution. Alternatively, if non-mapped lines are found between a
chunk part and its adjacent context, they indicate an unstable con-
text. If non-mapped lines are found between non-adjacent chunk or
context parts, then all chunks in between receive a non-derivable
resolution, and all context parts in-between are unstable.

Dealing with Non-Linear Alignments. Developers may change
the order of chunk resolutions when resolving conflicts, meaning
that they move a chunk resolution after or before the resolution
of the preceding or following chunks. We found that only 2.22% of
files in our sample were reordered.

Such reorderings are challenging for a recommender due to
possible combinatorial explosions. Especially for large files with
many chunks, restructurings can result in ambiguous matches be-
tween the chunks of the tentative merge and the commit. As such
ambiguities may tamper our resolution pattern classification, we
conservatively treat restructured files as non-derivable (in RQ2) and
make no statement about the derivability of their contained chunks.

For the classification of individual chunks in RQ1, we exclude all
chunks of restructured files, as we cannot confidently classify them.

Whitespace Normalization. To minimize the effect of whitespace
differences in our mapping and subsequently on the derivability
rates of chunks and merges, MeGA normalizes whitespace in ten-
tative and committed files prior to analysis. This is a lightweight,
language-agnostic formatting that removes all empty lines within
the files, removes all leading and trailing whitespace from non-
empty lines and reduces all other whitespace to a single space
character ’ ’. In a preliminary analysis, we measured the effect of
whitespace normalization on our analysis results and found slightly
more derivable patterns (i.e., in the mean, 0.376% ours, 0.0564%
theirs, and 0.687% all other derivable patterns) and 1.12% fewer non-
derivable resolutions. This suggests that developers occasionally
apply custom formatting while resolving merge conflicts, particu-
larly for the less common (see Sec. 4.1) resolution patterns.

3.3.3 Statistical Data Analysis. MeGA stores the information about
chunk resolutions and eventual context modifications, giving in-
sight into how often each derivable pattern was used (RQ1), and, by
aggregation, whether the merge commit is derivable (RQ2). Lastly,
MeGA collects various other data about the merge, serving as the
basis for a statistical correlation analysis (RQ3). All data is then
analyzed and visually represented by Jupyter Notebooks, which are
part of our replication package.

4 RESULTS
In this section, we summarize our results structured by research
questions, while all details can be found in the replication package.

4.1 RQ1: Derivability of Chunk Resolutions
In Fig. 3, we show how chunks are distributed over our resolution
patterns (i.e., how often they match one of our (non-)derivable
resolution patterns of Fig. 2), separated by GitHub project types.
We find that, overall, 87.9% of chunks are resolved by using one of
our derivable patterns, with the elementary patterns ours and theirs
being used most often. Altogether, the ours pattern was used in
62.4% of cases, more than twice as often as any other pattern. The
theirs pattern was used more often than a non-derivable resolution
in the majority of project types. We accumulated the frequencies of
all remaining patterns in the other category, which even summed
up remained the least used category. Nevertheless, we found each
of our derivable patterns, even the most complex ones. Ordered
by pattern frequency they are: ours+base (0.661%), base (0.974%),
ours+base+theirs (1.22%), theirs+base (1.29%), ours+theirs (1.34%),
empty (2.45%), theirs (17.6%), ours (62.4%), and non-derivable (12.1%).

Fig. 3 also shows a visible variance between the project types, e.g.,
while only 6.61% of C++ project chunks are non-derivably resolved,
20.3% are non-derivably resolved in Rust projects. Similarly, the
distributionwithin the derivable patterns varies between the project
type, but the inequalities 𝑜𝑢𝑟𝑠 > 𝑡ℎ𝑒𝑖𝑟𝑠 > 𝑜𝑡ℎ𝑒𝑟 hold for every
project type but C.

While Fig. 3 gives a breakdown following GitHub’s classification
of projects, other file types may be part of these merges (e.g., a
Java project’s merge could also include .json files, .xml files, etc.).
Thus, we additionally analyzed whether source code files feature

EASE 2024, 18–21 June, 2024, Salerno, Italy Boll, et al.

c cpp cs go java js php py rs ts mean
GitHub project type

0.0

0.2

0.4

0.6

0.8

1.0

de
riv

ab
ili

ty
 ra

te

non-derivable
other
theirs
ours

Figure 3: Chunk resolution patterns for different languages.

0 10 20 30 40 50
#chunks in tentative merge

0.0

0.2

0.4

0.6

0.8

1.0

de
riv

ab
ili

ty
 ra

te

Instances
100

1,000
10,000

Figure 4: Derivability rates of chunks by tentative merge
size. Bubbles represent instances of our sample; red crosses
represent the mean chunk derivability rates.

different resolution patterns by considering only files matching a
project’s type (e.g., only .java files of a Java project). We found that
the overall derivability rate of chunks does not change for source
code files, and only the distribution within patterns ours, theirs, and
other varied slightly in comparison to Fig. 3.

Fig. 4 gives an overview of chunk derivability rates with respect
to the number of chunks of their tentative merge. A bubble at
(𝑥,𝑦) represents tentative merges comprising 𝑥 chunks, having a
derivability rate of 𝑦 = 𝑖

𝑥 with 𝑖 of the 𝑥 chunks being derivable.
The bubble size represents the number of instances of such merges
in our sample. A red cross at (𝑥,𝑦) represents that chunks of a
merge with 𝑥 chunks have a mean derivability rate 𝑦. We see that
the vast majority of merges has few chunks (left-most bubbles are
bigger) and that merges of all sizes usually are resolved with a high
derivability rate (upper bubbles are bigger and more abundant). The
mean derivability rate of chunks increases slightly from around
0.75 to 0.85, but the right-most means show a high variance, as
there are fewer tentative merges with a high number of chunks.
RQ1: How many conflicting chunk resolutions are derivable,
and how are they distributed over our resolution patterns?
We found 87.9% of chunks to be derivable. The pattern ours was
used most often to resolve chunks in every language and more

than 60% overall. Chunks in the source code and other files of
other types are mostly resolved in the same way. Merges with a
low number of chunks dominate. The derivability rate of individ-
ual chunks increases slightly with a higher number of chunks in
a tentative merge.

4.2 RQ2: Derivability of Merge Commits
We list our overall findings of RQ2 in Fig. 5a. All languages (in
terms of GitHub project type) show a merge commit derivability
of 30 to 40%; about 20% of the merges have a modified context
while all chunks are derivable, and 16.5% of merges have at least
one non-derivable chunk with a stable context. This leaves 26.4%
of the chunks with both non-derivable chunk(s) and a modified
context. For all languages, there are more merges where a modified
context prevented derivability than merges where non-derivable
chunk(s) prevented derivability. In contrast to our results for RQ1,
the variability between the different languages is much reduced.

In Fig. 5b, we give a breakdown of the derivability rate by the
number of chunks. The derivability drops with an increase of
chunks, from around 45% derivability for a single chunk, to around
20% for merges with high chunk counts. With higher chunk counts,
there are fewer instances of merges where only the context remains
stable. The fact that the derivability levels off at around 20% (even
for high chunk counts up to 200) can be explained by two factors: (i)
the slight increase of the derivability rate for higher chunk counts
(cf. Fig. 4), and (ii) the chunks of a tentative merge are not resolved
independently – otherwise it would decrease at an exponential rate
with the number of chunks. For a chunk count, e.g., 40, the mean
derivability rate is 0.823 (cf. Fig. 4), which would result in a theo-
retical rate of 0.82340 = 0.000416 for independent resolutions – we
measured a derivability of 0.206 instead (cf. Fig. 5b).

The derivability of merge commits, especially of bigger size,
seems discouraging at first glance. However, if tentative merges are
usually resolved with a few different resolution patterns, at least
the combinatorial explosion would be limited for a recommender.
We just learned that chunks are not resolved independently; thus,
we investigate the ‘homogeneity’ in merges and files. We define
‘homogeneity’ as the number of different resolution patterns used
in a merge (cf. Fig. 6a) or a file (cf. Fig. 6b). If a merge uses only the
pattern ours to resolve all chunks, it is counted in the bottom bar. If
it also contains a theirs chunk, it is counted in the penultimate bar,
etc. As tentative merges increase in chunk number, only around
30% of them are uniformly resolved with exactly one pattern. In
contrast, individual files with many chunks are resolved much more
homogeneously, even for very large files.

RQ2: Are merge commits derivable, and does this vary with
an increasing number of conflicting chunks?
30 − 40% of the merge commits are derivable for all languages.
Considering only chunks for merge commit derivability (omitting
context), ca. 60% of merge commits are derivable. Merge commit
derivability is more consistent language-wise than chunk deriv-
ability of RQ1. The derivability rate of merge commits falls from
ca. 45% to ca. 20% as the chunk count increases. The homogeneity
of resolutions is much more uniform on file than on merge level.

Towards Semi-Automated Merge Conflict Resolution:
Is It Easier Than We Expected? EASE 2024, 18–21 June, 2024, Salerno, Italy

cs c cpp go js java php py rs ts mean
0.0

0.2

0.4

0.6

0.8

1.0

de
riv

ab
ili

ty
 ra

te

non-derivable, unstable
only stable
only derivable
derivable chunks, stable context

(a) GitHub project type

1 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

de
riv

ab
ili

ty
 ra

te

non-derivable, unstable
only stable
only derivable
derivable chunks, stable context

(b) #chunks in tentative merge

Figure 5: Distribution of derivability of merge commits (Fig. 5a), broken down by the number of chunks (Fig. 5b).

1 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

we
ig

ht

#resolution
types

5+
4
3
2
1

(a) #chunks in tentative merge

1 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

we
ig

ht

#resolution
types

5+
4
3
2
1

(b) #chunks in tentative file

Figure 6: Homogeneity of resolutions in merges (Fig. 6a) and files (Fig. 6b) of different chunk counts.

4.3 RQ3: Factors correlating with Derivability
To learnmore about the factors that influence whether a merge com-
mit is derivable, whether chunks are derivable, and whether context
is stable, we construct a correlation matrix, combining multiple
variables, in Fig. 7. The upper part of the matrix pertains to vari-
ables of a merge and how it is resolved, the lower part to variables
of a file and how it is resolved. Only the pairs of column 4 and rows
4 deviate by name (shown in red). Variables of the matrix marked
with a ‘%’-symbol represent the ratio of chunks that satisfy the vari-
able’s condition. Variables without the ‘%’-symbol are binary. We
compute the rank correlations 𝜌 after Spearman [12], as none of our
variables are normally distributed. In the matrix, correlations with
|𝜌 | ≥ 0.3 are shown with a number. The (very few) insignificant
correlations are presented uncolored, same as completely uncorre-
lated variables. All other correlations are highly significant, with
𝑝 < 0.001, even for weak correlations. Note that in contrast to many
correlation analyses, here, some variables are related by definition,
e.g., 𝑜𝑢𝑟𝑠% + 𝑡ℎ𝑒𝑖𝑟𝑠% + 𝑏𝑎𝑠𝑒% + . . . = 𝑐ℎ𝑢𝑛𝑘𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑏𝑙𝑒%.

While the derivability of a merge commit (upper part of Fig. 7)
is only influenced by whether all chunks are derivable and its
context is stable, the latter shows a higher correlation, echoing
our findings in Fig. 5b. Both ours and theirs are neutral in regard
to a stable context, but are weakly positively correlated to chunk
and overall derivability. A higher presence of ours chunks indicates

fewer theirs chunks used in a resolution, and vice versa. The more
exotic resolution patterns, i.e., 𝑏𝑎𝑠𝑒% and below, show only very
weak correlations, but a higher presence of them comes with a
more unstable context and less derivable merge commit.

In addition to the factors we show here, we also measured all pair-
wise correlations of the variables of the matrices and the following:
number of chunks and conflicting files in the tentative merge; the
percentage of conflicting source code files, the length of conflict-
ing files; whether named or implicit branches were merged; how
many commits and authors (up to the base version) the branches
had before merging; prior used resolution patterns and when the
merge commits took place. However, none of these factors showed
a correlation stronger than 0.3 to any of the factors in this matrix.

As we have seen in RQ2, the resolution homogeneity in files
can be much higher than in merges. Therefore, we also investigate
file correlations. In the lower part of Fig. 7, we observe an almost
identical replication of the upper part, but with stronger correlations
– all colored cells are again highly significant with 𝑝 < 0.001. On
the file level, some variables not depicted in Fig. 7 also showed
correlations, e.g., how often the ours pattern was used in files of
the same file type prior to the current merge correlated to ‘file
derivable’ with 0.35, to ours with 0.46, and to theirs with −0.35.
RQ3: Which quantitative factors influence derivability,
and do they depend on the granularity level of conflicting

EASE 2024, 18–21 June, 2024, Salerno, Italy Boll, et al.

1.0 0.5 0.0 0.5 1.0

ch
un

ks
 d

er
iv

ab
le

%
al

l c
hu

nk
s d

er
iv

ab
le

co
nt

ex
t s

ta
bl

e
m

er
ge

/f
ile

 d
er

iv
ab

le
ou

rs
 %

th
eir

s %
ba

se
 %

em
pt

y
%

ou
rs

, t
he

irs
 %

ou
rs

, b
as

e
%

th
eir

s,
ba

se
 %

ou
rs

, t
he

irs
, b

as
e

%

chunks derivable %
all chunks derivable

context stable
merge derivable

ours %
theirs %
base %

empty %
ours, theirs %
ours, base %

theirs, base %
ours, theirs, base %

m
er

ge
 le

ve
l

1 .96 .59 .36
.96 1 .61

1 .75
.59 .61 .75 1 .34
.36 .34 1 -.38

-.38 1
1

1
1

1
1

1

chunks derivable %
all chunks derivable

context stable
file derivable

ours %
theirs %
base %

empty %
ours, theirs %
ours, base %

theirs, base %
ours, theirs, base %

fil
e

lev
el

1 1 .35 .7 .52
1 1 .36 .7 .52

.35 .36 1 .82 .45
.7 .7 .82 1 .61
.52 .52 .45 .61 1 -.64

-.64 1
1

1
1

1
1

1

Figure 7: Correlation matrices of factors that potentially
influence the derivability of merges and files.

merges?
Few of the analyzed factors show strong correlations. Correla-
tions are similar, though more pronounced on file granularity
opposed to merge granularity. Using ours is inversely correlated
to using theirs. Using more exotic resolution strategies slightly
correlates with modifying context and thus merges becoming
non-derivable.

5 DISCUSSION
We discuss our results in terms of observations and implications
wrt. our overall research goal and potential threats to validity.

5.1 Observations and Implications
RQ1. Building on Ghiotto et al.’s [16] findings, our hypothesis

that developers favor derivable chunk resolutions was strongly
supported. Overall, 87.9% of chunks are derivable, with the pat-
tern ours being predominant, exceeding 50% across most analyzed

languages. Most individual chunks being resolved using derivable
patterns emphasizes the potential for semi-automated resolutions
for individual chunks.

RQ2. As analyzed in Figs. 5a and 5b, the derivability of merge
commits drops significantly compared to the derivability of individ-
ual chunks. At first glance, these results do not support the idea of a
(simple) semi-automated merging tool. However, we must consider
that a single non-derivable conflicting chunk may categorize the
merge as non-derivable. Moreover, our approach to classify deriv-
able resolutions is, on purpose, highly conservative in that we do
not allow restructurings in the merge commit. Considering that
the probability of a non-derivable conflicting file increases with the
size of a merge, these results are also not too surprising.

With this in mind, it is noteworthy that non-derivable changes
tend to be more prevalent in the context rather than within chunks.
Consequently, a merge not being derivable solely due to an unstable
context can still be considered a positive outcome. While leaving
the context for developers, the resolutions of individual chunks
could potentially be generated.

The most obvious candidates for semi-automated resolution are
merges with few chunks. Considering Fig. 4 (see large bubbles in
the upper left corner) and Fig. 5b (see left-most bars), such merges
have the highest derivability, occur most often, and are also the
least complex ones considering a possible combinatorial explosion.

As indicated by Fig. 4 (see red crosses), developers choose deriv-
able chunks more often when tentative merges grow large. This
relation suggests that, in large merges, developers fall back to a
simple resolution pattern more often. However, the derivability rate
still does not approach 1.0, even for extremely large merges with
hundreds of chunks, resulting in about 10% of chunks that are not
resolvable without additional information.

A similar effect can be observed for the homogeneity of conflict
resolutions and the chunk count. In Fig. 6a (see right-half), the ho-
mogeneity slightly increases for (most) larger merges. Furthermore,
it is noteworthy that this effect becomes even more pronounced
when considering the homogeneity per file, as depicted in Fig. 6b
(see right-half). This difference in Figs. 6a and 6b indicates that
developers tend to choose one resolution type per file, even though
in a whole merge, the resolution types may differ. Thus, a tool
that supports developers in resolving merge conflicts could prop-
agate a resolution strategy from a single chunk to the whole file,
while propagating the resolution for the entire merge may require
additional (probably structural or even semantic) information.

Language-wise, we found only marginal differences with respect
to Figs. 3 and 5a. Except in Fig. 3, the ours pattern in C and C++
projects is more predominant. However, when filtering for specific
source code files, the difference vanishes. These results can be
interpreted such that there are at least certain basic resolution
strategies that are language-agnostic.

RQ3. Here, we examined factors influencing the derivability of
merge or file resolutions. Few factors showed strong correlations,
with file-level granularity (cf. Fig. 7) exhibiting more pronounced
correlations than merge-level granularity. This is an indicator that
it is easier to give predictions on a file level than on the merge
level, echoing our findings of homogeneity. The inverse correlation
between the ours and theirs pattern (see middle part of the matrices),

Towards Semi-Automated Merge Conflict Resolution:
Is It Easier Than We Expected? EASE 2024, 18–21 June, 2024, Salerno, Italy

and the correlation of exotic resolution strategies with modified
context, provide insights into developer preferences and potential
heuristics for automated conflict resolution. However, most factors
we analyzed for RQ3 did not show any linear correlation, e.g., we
found the commit time or the usage of implicit branches had no
impact on the conflict resolution.

In general, there are countless potentially influencing factors;
in our analysis, we picked those that seemed most likely from our
intuition and experience. Nevertheless, the sample of factors we
analyzed led us to conclude that merge conflicts only weakly follow
project-specific factors and are rather resolved individually. In other
words, automatically resolving merge conflicts is still a highly chal-
lenging problem. However, our in-depth analysis provides some
interesting starting points for building the next generation of auto-
matic merging tools.

5.2 Threats to Validity
5.2.1 Internal Validity. To conduct our analysis, we implemented
MeGA using the well-maintained JGit library. Our tool incorporates
various algorithms and techniques designed for efficiently analyz-
ing thousands of Git histories. Arising problems are logged [1]
for the analyzed files and merges. Only a small fraction of sam-
ples encountered technical problems: We excluded 1.18% of all
merge commits, as they only contained non-line-based binary files,
e.g., images. Moreover, for 1.59% of merge commits, we could not
determine the specified base commit due to missing or pruned
repository information. We further excluded 1.83% of the merge
commits, which JGit flagged false-positively as conflicting, while
no conflicting file was present. In projects exceeding 100 merges
(see Sec. 3.3), we resampled to obtain 100 unproblematic merges
each. Moreover, 1.62% of the commits in our sample are duplicated
due to forked projects on GitHub.

Our analysis replays merges using Git’s default merge strategy.
In general, we did not know the exact settings and tools used by
the developers to resolve the merge conflict. Thus, some develop-
ers may have perceived merges differently. However, assuming a
(hypothetical) recommender system, it is reasonable to assume a
default merging strategy to estimate the possibility of automation.

The mapping of the tentative merge to the merge commit is
performed using a textual line-based mapping. Using structural
mappings, more mappings of chunks or their context may be found.
In principle, this could have improved our results concerning the
derivability of merges. To mitigate this problem while still being
language-agnostic, we introduced whitespace normalization, as
described in Sec. 3.3.2. For whitespace-sensitive languages such as
Python, this does not have a noticeable impact in our results.

We solely analyzed conflicting files in a merge to assess context
stability, not accounting for potential modifications developers
performed in non-conflicting files during the merge.

Finally, we rely on GitHub’s classification [5] to determine the
language of a project, whichmay be ambiguous, especially for larger
projects that are often polyglot. However, our conclusions do not
rely on the language classification, and therefore, such ambiguities
do not impact their validity.

5.2.2 External Validity. The generalizability of our findings de-
pends on several factors concerning our sampling strategy: First,

we analyzed only Git repositories as it is the state-of-the-art VCS
– other mainstream VCSs may handle merge conflicts differently.
However, all mainstream VCSs use similar three-way merging tech-
niques, from which we expect similar results. Second, we only
analyzed ten languages, and our results may not be generalizable to
conceptually divergent niche languages. Nevertheless, we covered
the most popular languages of diverse programming paradigms.
Third, we selected the 1000 most popular GitHub projects per lan-
guage. A project’s popularity might influence how merging is han-
dled, though. We limited sampling to 100 merges per project to
prevent bias from projects with extensive histories. Although rel-
evant influencing factors for RQ3 might have been missed, our
approach revealed promising leads for future research.

6 RELATEDWORK
Ghiotto et al. [16] conducted the most closely related study to ours.
They analyzed individual chunks and their resolution in detail in
open-source Java projects. They found that 87% of the chunk res-
olutions added no new code which inspired our work. However,
we take a much more conservative view than Ghiotto et al. by fo-
cusing on derivable resolutions, hypothesizing that they could be
practically derived. Specifically, our definition of derivable chunks
avoids a combinatorial explosion of possible rearrangements of
conflicting code lines, and we consider context stability as another
necessary condition for the derivability. Moreover, as opposed to
their language-specific approach, we deliberately keep our defini-
tions and analyses language-agnostic. The generic functionality of
mainstream VCSs has been one of the most important factors for
their success [15]. Consequently, we did ourselves to Java projects
but gathered a larger set of heterogeneous GitHub projects.

Other empirical studies on the nature of merge conflicts and how
developers deal with them are less related to our work. Yuzuki et
al. [32] found that our derivability patterns, ours and theirs, con-
stitute up to 99% of conflicts within a method body. While this
suggests an even higher fraction of derivable chunks, the findings
are based on only ten open-source Java Projects. The studies con-
ducted by Zimmermann [34] and Nguyen et al. [25] are comparable
to ours from a methodological point of view in that they are mining
open-source repositories for merge commits. Yet, they are guided by
different research questions that focus on integration and conflict
rate evolution in a project. Shen et al. [28] studied semantic conflicts,
which are out of the scope of our study as they are not detected
by Git, but in later stages of compiling and testing. Though limited
to a manual qualitative analysis, they found that such conflicts
usually need a non-derivable resolution. Interestingly, such reso-
lutions often still seem to be similar to one of our patterns ours or
theirs. Qualitative results on how developers organize conflict man-
agement have been obtained through semi-structured interviews
conducted by Nelson 2019 et al. [24]. Interestingly, participants
reported situations where too many conflicts involved in a merge
attempt were simply resolved by discarding one of the branches.
We can empirically confirm this finding as, from a certain number
of conflicts in a merge, their derivability tends to increase again.

Most empirical studies, however, revolve around the perfor-
mance evaluation of sophisticated techniques involved in software

EASE 2024, 18–21 June, 2024, Salerno, Italy Boll, et al.

merging. Traditionally, there is a line of research that aims at provid-
ing empirical evidence for (semi-)structured merging leading to an
increased accuracy in conflict detection compared to unstructured
merging [9, 27, 28], which is largely orthogonal to our research
goal of improving conflict resolution. Our work rather aligns with
resolution techniques utilizing program synthesis [26] and deep-
learning [13, 30]. While these approaches are still in their infancy,
they might become feasible in the future. In fact, we favor simplicity
in terms of language-agnostic conflict resolution patterns that are
easy to understand for developers, but their application in terms of
a recommender system may well be combined with machine learn-
ing to predict their applicability. In this regard, our comprehensive
dataset may serve as a basis for supervised learning.

7 CONCLUSION
We conducted a large-scale empirical study on how merge con-
flicts are resolved in practice. In our study, we analyzed merge
conflicts from 10,000 GitHub projects that cover the most popular
programming languages. We found that the vast majority of chunk
resolutions are derivable (87.9%). In almost all derivable cases, devel-
opers chose the simple elementary patterns ours and theirs (62.4%
and 17.6% respectively). Further, we found that around 35% of merge
commits are derivable, but the derivability drops to around 20%with
increasing chunk count due to unstable context and non-derivable
chunks. Lastly, we investigated which factors influence derivability.
Here, we identified few factors with high correlation (e.g., the ours
pattern) and some factors with low correlation (e.g., compound
patterns such as ours+theirs, or ours+base).

Based on our results, we believe that semi-automated conflict
resolution is feasible in general and that, for some use cases, it may
be easier than expected. So far, however, our conflict resolution
strategy is just hypothetical, and the next consequent step towards
turning it into reality is to develop a recommender that predicts
the most likely resolution pattern for a given conflict, or resorts to
a manual resolution if no derivable resolution seems appropriate.
While we leave this step for future work, both our findings and the
gathered dataset serve as a promising starting point.

ACKNOWLEDGMENTS
This work has been supported by the Swiss National Science Foun-
dation (SNSF) under grant 219719.

REFERENCES
[1] 18-01-2024. https://zenodo.org/records/10511517.
[2] 18-01-2024. https://docs.github.com/en/rest?apiVersion=2022-11-28.
[3] 18-01-2024. https://eclipse.dev/jgit.
[4] 18-01-2024. https://madnight.github.io/githut/#/stars/2023/3.
[5] 18-01-2024. https://github.com/github-linguist/linguist.
[6] 18-01-2024. https://git-scm.com/docs/git-merge.
[7] Petra Brosch, Philip Langer, Martina Seidl, KonradWieland, and Manuel Wimmer.

2010. Colex: A Web-based Collaborative Conflict Lexicon. In IWMCP. ACM, 42–
49.

[8] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2013. Early
Detection of Collaboration Conflicts and Risks. TSE 39, 10 (2013), 1358–1375.

[9] Guilherme Cavalcanti, Paulo Borba, Georg Seibt, and Sven Apel. 2019. The Impact
of Structure on Software Merging: Semistructured Versus Structured Merge. In
ASE. IEEE, 1002–1013.

[10] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. 2008. Manag-
ing Model Conflicts in Distributed Development. In MODELS (LNCS, Vol. 5301).
Springer, 311–325.

[11] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. CSUR 30, 2 (1998), 232–282.

[12] Joost CF De Winter, Samuel D Gosling, and Jeff Potter. 2016. Comparing the
Pearson and Spearman Correlation Coefficients Across Distributions and Sample
Sizes: A Tutorial Using Simulations and Empirical Data. Psychological methods
21, 3 (2016), 273.

[13] Elizabeth Dinella, Todd Mytkowicz, Alexey Svyatkovskiy, Christian Bird, Mayur
Naik, and Shuvendu K. Lahiri. 2023. DeepMerge: Learning to Merge Programs.
TSE 49, 4 (2023), 1599–1614.

[14] H.-Christian Estler, Martin Nordio, Carlo A. Furia, and Bertrand Meyer. 2014.
Awareness and Merge Conflicts in Distributed Software Development. In ICGE.
IEEE, 26–35.

[15] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey
Clemm, Walter Tichy, and Darcy Wiborg-Weber. 2005. Impact of Software
Engineering Research on the Practice of Software Configuration Management.
TOSEM 14, 4 (2005), 383–430.

[16] Gleiph Ghiotto, Leonardo Murta, Márcio de Oliveira Barros, and André van der
Hoek. 2020. On the Nature of Merge Conflicts: A Study of 2,731 Open Source
Java Projects Hosted by GitHub. TSE 46, 8 (2020), 892–915.

[17] Mário Luís Guimarães and António Rito Silva. 2012. Improving Early Detection
of Software Merge Conflicts. In ICSE. IEEE, 342–352.

[18] Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive Conflict Mini-
mization through Optimized Task Scheduling. In ICSE, David Notkin, Betty H. C.
Cheng, and Klaus Pohl (Eds.). IEEE, 732–741.

[19] Petra Kaufmann, Horst Kargl, Philip Langer, Martina Seidl, Konrad Wieland,
Manuel Wimmer, and Gerti Kappel. 2010. Representation and Visualization of
Merge Conflicts with UML Profiles. In ME. 53–62.

[20] Sanjeev Khanna, Keshav Kunal, and Benjamin C Pierce. 2007. A Formal Investi-
gation of Diff3. In FFTTCS. Springer, 485–496.

[21] Simon Larsén, Jean-Rémy Falleri, Benoit Baudry, and Martin Monperrus. 2023.
Spork: Structured Merge for Java With Formatting Preservation. TSE 49, 1 (2023),
64–83.

[22] Olaf Leßenich, Sven Apel, Christian Kästner, Georg Seibt, and Janet Siegmund.
2017. Renaming and Shifted Code in Structured Merging: Looking Ahead for
Precision and Performance. In ASE. IEEE, 543–553.

[23] Tom Mens. 2002. A State-of-the-Art Survey on Software Merging. TSE 28, 5
(2002), 449–462.

[24] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny Dig.
2019. The life-cycle of merge conflicts: processes, barriers, and strategies. 24, 5
(2019), 2863–2906.

[25] Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An Analysis of Merge Conflicts
and Resolutions in Git-Based Open Source Projects. CSCW 27, 3-6 (2018), 741–
765.

[26] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu K. Lahiri,
andMike Kaufman. 2021. Can Program Synthesis be Used to LearnMerge Conflict
Resolutions? An Empirical Analysis. In ICSE. IEEE, 785–796.

[27] Georg Seibt, Florian Heck, Guilherme Cavalcanti, Paulo Borba, and Sven Apel.
2022. Leveraging Structure in Software Merge: An Empirical Study. TSE 48, 11
(2022), 4590–4610.

[28] Bowen Shen, Cihan Xiao, Na Meng, and Fei He. 2021. Automatic Detection and
Resolution of Software Merge Conflicts: Are We There Yet? CoRR abs/2102.11307
(2021). arXiv:2102.11307

[29] Marcelo Sousa, Isil Dillig, and Shuvendu K Lahiri. 2018. Verified Three-Way
Program Merge. PACMPL 2, OOPSLA (2018), 1–29.

[30] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz, Eliza-
beth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K. Lahiri.
2022. Program Merge Conflict Resolution via Neural Transformers. In ESEC/FSE.
ACM, 822–833.

[31] KonradWieland, Philip Langer, Martina Seidl, Manuel Wimmer, and Gerti Kappel.
2013. Turning Conflicts into Collaboration. CSCW 22, 2-3 (2013), 181–240.

[32] Ryohei Yuzuki, Hideaki Hata, and Kenichi Matsumoto. 2015. How We Resolve
Conflict: An Empirical Study of Method-Level Conflict Resolution. In SWAN.
IEEE, 21–24.

[33] Fengmin Zhu, Fei He, and Qianshan Yu. 2019. Enhancing Precision of Structured
Merge by Proper Tree Matching. In ICSE. IEEE, 286–287.

[34] Thomas Zimmermann. 2007. Mining Workspace Updates in CVS. In MSR. IEEE,
11.

https://zenodo.org/records/10511517
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://eclipse.dev/jgit
https://madnight.github.io/githut/#/stars/2023/3
https://github.com/github-linguist/linguist
https://git-scm.com/docs/git-merge
https://arxiv.org/abs/2102.11307

	Abstract
	1 Introduction
	2 Background on Merge Conflicts
	3 Research Methodology
	3.1 Envisioned Conflict Resolution Strategy
	3.2 Research Questions
	3.3 Study Design and Implementation

	4 Results
	4.1 RQ1: Derivability of Chunk Resolutions
	4.2 RQ2: Derivability of Merge Commits
	4.3 RQ3: Factors correlating with Derivability

	5 Discussion
	5.1 Observations and Implications
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

