
SMOKE: Simulink Model Obfuscator Keeping Structure
Alexander Boll
University of Bern
Bern, Switzerland

Gesellschaft für Informatik
Berlin, Germany

Timo Kehrer
University of Bern
Bern, Switzerland

Michael Goedicke
University of Duisburg-Essen

Essen, Germany

Abstract
Simulink is extensively used across various industries to model and
simulate cyber-physical systems. Most industry-built models con-
tain sensitive intellectual property, which prevents companies from
sharing models with interested third parties, such as researchers.
Initiatives to replace industry-built models with open-source alter-
natives exist, however they offer only limited remedy. In this work,
we offer a novel approach: a Simulink obfuscation tool named
SMOKE, designed to selectively protect intellectual property in
models. This allows companies to share relevant parts of their mod-
els with researchers or other third parties, while safeguarding all
sensitive information. We evaluated the tool on an extensive set
of open-source models and found it successfully removes sensitive
components, while preserving model structure. A video demonstra-
tion of SMOKE is available online at https://youtu.be/2KI6HGHrJ20.

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools;
•Computer systems organization→ Embedded and cyber-physical
systems; • Computing methodologies→Model development
and analysis; • Security and privacy → Software and applica-
tion security.

Keywords
Simulink, Obfuscation, Sanitization, Protection, Intellectual Prop-
erty, FAIR Principles, Tool
ACM Reference Format:
Alexander Boll, Timo Kehrer, andMichael Goedicke. 2024. SMOKE: Simulink
Model Obfuscator Keeping Structure. In Proceedings of ACM/IEEE 27th In-
ternational Conference on Model Driven Engineering Languages and Systems
– Tools and Demonstrations Track (MoDELS Demos). ACM, New York, NY,
USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Across various industries, Simulink is a widely-used tool to design,
implement and simulate cyber-physical systems [4, 5]. The popu-
larity of Simulink also gives rise to a considerable research interest,
e.g., into better understanding Simulink models and their evolution
[22]. However, within the research community, it is well known

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MoDELS Demos, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

that companies mostly do not share their Simulink models to pro-
tect intellectual property (IP) [7]. In some cases, industry partners
share their models under severe limitations, such as non-disclosure
agreements, which strictly prohibit the publication of model files or
any visual representations of the models. Often, companies control
the composition of research groups, or restrict access to models to
company computers and locations. This practice creates significant
challenges for the FAIR principles [28] in Simulink research and
often leaves researchers without useful study subjects [22]. The
modeling research community has begun addressing this issue by
developing corpora of open-source Simulink models [5, 22–24],
which can serve as substitutes for proprietary models in research.
However, open-source models in general are much smaller than
industry models, and are often no adequate substitutes [5, 7].

In this work, we introduce SMOKE: Simulink Model Obfuscator
Keeping structurE, an extendable, open-source tool for protecting
intellectual property through selective anonymization of Simulink
models. Our overall goal is to enable anonymization by ensuring
the removal of sensitive information while maintaining the models’
usefulness for research. Thus, a model being anonymized using
SMOKE is still a valid Simulink model whose logical structure is
isomorphic to the original one, yet exposing a different visual ap-
pearance and functional behavior, depending on the desired degree
of anonymization. Both kinds of modification are implemented
through model transformations. The former class of transforma-
tions is based on layout obfuscations as partially realized in an early
predecessor version of SMOKE1, while the latter class adopts the
idea of sanitization (i.e., removal of sensitive data or functionality)
as originally presented in the context of relational databases [17].
The concrete transformations to be applied can be selected by the
user, depending on the desired degree of anonymization. SMOKE
supports both interactive and non-interactive selections of transfor-
mations, which are then composed to an executable transformation
workflow.

SMOKE addresses two use cases which are of primary interest
for researchers. First, it simplifies obtaining approval for publishing
visual representations of Simulink models by selectively remov-
ing layout information. Second, companies may permit further
study or use of sanitized models where sensitive data or functional-
ity is removed. As opposed to traditional obfuscators concealing
a program’s [10] or model’s [27] entire functionality within an
uninspectable and immutable virtual black box [3], our white-box
anonymization yields a native Simulink model open to further
inspection. This means that the model can be opened with the
standard MATLAB/Simulink editor or other tools working with
Simulink models. A particular feature of SMOKE is that it pre-
serves the logical structure of the original models. Even if highly
1https://github.com/McSCert/Obfuscate-Model

https://orcid.org/0000-0002-9881-9748
https://orcid.org/0000-0002-2582-5557
https://orcid.org/0009-0004-2383-6764
https://youtu.be/2KI6HGHrJ20
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/McSCert/Obfuscate-Model


MoDELS Demos, September 22–27, 2024, Linz, Austria Boll et al.

anonymized, the obtained ‘structure-only’ models still remain valu-
able study subjects for many research interests. To better under-
stand various aspects of a model or its evolution, empirical research
on Simulink models often focuses on metrics related to model struc-
ture [1, 5, 9, 24], or relies on third-party analysis tools such as
clone detectors, differencing tools, slicers, or variant and informa-
tion flow analyzers that require only an intact model structure to
function [15, 19–21, 26].

We give an overview of SMOKE’s anonymization capabilities,
and showcase the effect of interactively applying a subset of those
on a realistic example. Moreover, we report about an experiment
applying SMOKE’s full anonymization capabilities on thousands of
open-source models taken from SLNET [24], with a particular focus
on evaluating its general applicability and functional correctness.
While SMOKE focuses on Simulink models, we argue that other
modeling ecosystems such as UML, SysML, Modelica, etc. could
also benefit from a layout, or functionality anonymizer [16].

Our tool SMOKE, written in MATLAB, along with its docu-
mentation, and all artifacts from our experimental evaluation are
open-source and available at https://github.com/lanpirot/SMOKE.
A brief video demonstration of SMOKE is available online at https:
//youtu.be/TFeFNKHSlAw.

2 Background
2.1 Simulink
Simulink [13] is a versatile modeling, implementation, and simula-
tion tool and IDE. Simulink is integrated with and based on MAT-
LAB, and offers toolboxes for various industry domains. Models
created in Simulink are block diagrams, where Blocks are connected
by Signal Lines. Blocks perform computations, transforming their
inputs to outputs, while the output is transported by a Signal Line
to other Blocks’ inputs. Special Subsystem Blocks are employed to
hierarchically structure Simulink models, allowing for the nesting
of Blocks and Signal Lines. Subsystems enable views of a model,
where only the currently selected Subsystem and its direct children
are visible. Two views of a Simulink model are shown in Figure 1,
representing the contents of Subsystems named ‘Heat Sources’ and
‘Kelvin to Celsius’. These Subsystems are components of the model
shown in Figure 3a, where their internal contents are hidden and
they appear as opaque Subsystem Blocks.

While Simulink comes with an extensive set of different kinds
of Blocks, users can design new Blocks or configure a multitude
of Block parameters to customize Block behavior. The variety of
Blocks and their parameters offer a wide range of design options
for static and dynamic modeling.

2.2 Obfuscation and Sanitization
Obfuscations are transformations that increase the difficulty of
understanding a program’s (i.e. model’s) purpose or logic [8]. This
is achieved by changing some aspect of a program while preserving
the functionality of the original program. Collberg [10] classifies
obfuscations into three basic categories: layout obfuscation, data
obfuscation, and control obfuscation. Layout obfuscations adapt
documentation, naming, or formatting, usually by removing them
or resetting them to default placeholders. Data obfuscation alters

(a) (b)

Figure 1: Two Simulink Subsystems of the model in Fig-
ure 3a: the Subsystem in Figure 1a transforms temperature
from Kelvin to Celsius: 𝐶 = 𝐾 − 273, the Subsystem in Fig-
ure 1b computes the total heat generation of 𝑁 occupants:
𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑤𝑒𝑟 = 100 · 𝑁 .

the storage, encoding, aggregation, or ordering of data. Control
obfuscation changes the order or branching of the control flow.

Data sanitization [2, 17] is the protection of sensitive data in
relational databases. This protection is enforced by selectively re-
moving parts of the database, while valuable insights into the rest
of the data remain possible. Data sanitization is performed, so that
the protected database can be shared with others, without risking
the sensitive data being leaked.

3 Tool Overview and Capabilities
3.1 Design Rationale
Inspired by the concept of data sanitization (cf. Section 2.2), a sim-
ple yet effective approach for structure-preserving sanitization of
models is to remove or reset structurally irrelevant yet functionally
critical data, such as:

• Block Parameters: Values and settings determining Block
behavior.

• Constant Values: Fixed numerical values or other data.
• Block Callback Functions: Functions triggered by events.
• MATLAB scripts in Function Blocks: Complex MATLAB
scripts may be part of these special blocks.

• Functionality of Stateflow charts: These charts hold represen-
tations of logic-based state machines and control systems.

To achieve obfuscation, we adopt a layout obfuscation approach
(cf. Section 2.2), which is inherently structure-preserving. This
method reduces the readability of the model by altering its visual
layout, but it does not affect the model’s functionality.

Users can choose from multiple options for both sanitization and
obfuscation (cf. Section 3.3), which they can apply to selectively
anonymize the model. Note, that both sanitization and obfuscation
remove aspects of the model, which are thus not reverse engineer-
able. The remaining aspects (i.e. the structure) of the model may
give insights into the inner workings, still.

3.2 Transformation Workflow
Once the user initiates the anonymization, SMOKE executes the
user-selected transformations sequentially. Each transformation
iterates over all model elements, removing their names, or other
properties, resetting parameters to default values, etc. For some
transformations, SMOKE chooses a partial ordering. For example,
library links should be resolved (i.e. library Blocks currently not di-
rectly included in model) before other transformations are applied,
as changes on linked Blocks are not permitted. In a softer ordering

https://github.com/lanpirot/SMOKE
https://youtu.be/TFeFNKHSlAw
https://youtu.be/TFeFNKHSlAw


SMOKE: Simulink Model Obfuscator Keeping Structure MoDELS Demos, September 22–27, 2024, Linz, Austria

Figure 2: The GUI of SMOKE, displaying the various
anonymization options.

rule SMOKE is resizing and reshaping Blocks in the penultimate
step, to allow possible text within them to fit. Blocks are reposi-
tioned in the final step, to minimize overlap and create visually
pleasing diagrams.

However, users can choose their own order of transformation
execution by performing step-wise anonymization, activating only
a single checkbox each time.

3.3 GUI Overview and User Interaction
After starting SMOKE, its GUI presents the user with a variety of
anonymization options that can be activated or deactivated, see
Figure 2, and stating which model will be anonymized in the top
line. Users can choose from Functional sanitization (left panel),
which purposefully removes or breaks data or functionality of the
model, and Optical obfuscation (right panel), which hampers the
comprehensibility of the model. Furthermore, users may choose to
anonymize imported models (above the panels), i.e. Model Refer-
ences or linked Blocks. Users can interactively anonymize a model,
checking only a few boxes at first, then inspect the resulting model,
and then either revert or do another anonymization step with other
anonymizations.

Alternatively, users may choose to use SMOKE in batch mode,
to anonymize a whole set of models.

If a user used all anonymizations, only an ‘empty shell’ remains,
while all data, functionality, and layout is gone. Such a shell can still
offer value for structural analysis, for publishing screenshots of a
model view, or be used as a base for a model with different content.
Depending on the particular use-case, a partial sanitization may
suffice, while leaving key aspects of the model intact.

4 SMOKE in Action
To get an understanding of SMOKE, we show a series of example
obfuscation steps in Figure 3. All shown obfuscation steps are also
taking place within the nested Subsystems, like the ones in Figure 1
or even deeper layers, but are not visible in the outside views of
Figure 3. The sanitization steps are also invisible. Note that the user

(a) A Simulink model before anonymization.

(b) Block names and Annotations are removed.

(c) Coloring and Masks are removed.

(d) Block position, sizes and shapes are reset.

Figure 3: SMOKE obfuscates an exemplary model further
and further. Depending on the user-chosen anonymizations,
additional invisible changes may also occur.



MoDELS Demos, September 22–27, 2024, Linz, Austria Boll et al.

10 100 1,000 10,000 100,000

Model Size (#Blocks)

0.1

1.0

10.0

100.0

1,000.0

T
im

e
(s

)

Figure 4: Log-log scatter plot of model size vs anonymization
time for SMOKE execution on the SLNET model set.

can decide which aspects of the model they want obfuscated and
in which order.

(1) The original model in Figure 3a depicts various Block types,
and a richness in layout like coloring and relevant names.

(2) In a first step, SMOKE removes Annotations (top and bot-
tom text), resets names of Blocks, and Inputs/Outputs with
placeholders and hides them, cf. Figure 3b.

(3) Next, coloring and Block Masks are removed in Figure 3c.
(4) Lastly in Figure 3d, Block sizes and shapes are reset, and

Blocks and Signal Lines are repositioned. The diagram is
now completely scrambled, considering Figure 3a.

5 Evaluation
In this section, we demonstrate SMOKE’s applicability and validate
its functionality. To evaluate SMOKE in a large-scale experimental
setting, we used SLNET [24], a set of 9,105 open-source Simulink
models from 2,837 repositories from GitHub2 and the Mathworks
FileExchange.3 SLNET was previously used as a benchmark set
in other empirical studies [6, 25] and represents a highly diverse
spectrum of Simulink models, presenting numerous challenging
corner cases for SMOKE. We evaluated SMOKE on a Windows
laptop with an i9-13980HX processor and MATLAB R2024a.

To demonstrate SMOKE’s applicability, we used it to anonymize
the entire SLNET set within a reasonable timeframe. To this end,
SMOKE anonymized everymodel of the SLNET set, with all anonymiza-
tion options activated, as shown in Figure 2. SMOKE skipped broken
models that are unloadable, and models that are locked: of the 9,105
models 9,040 were loadable, and 7,916 of these were unlocked and
thus anonymized. SMOKE successfully anonymized the entire set in
about 15 hours, processing about 100 blocks per second on average
(see Figure 4 for a scatter plot of anonymization times for each
model). Though there might be even larger industrial models than
the open-source models comprised by SLNET, this demonstrates
SMOKE’s suitability for anonymizing entire industry projects.

To validate SMOKE’s correctness, we checked the structural in-
tegrity of the anonymized models, and whether their functionality

2https://github.com
3https://www.mathworks.com/matlabcentral/fileexchange

orig. compilable orig. not compilable

anon. compilable 1060 253
anon. not compilable 1582 5021

Table 1: A cross-table of the ability to compile SLNETmodels,
before vs. after anonymization.

is removed.We verified the equality of block numbers in the original
and anonymized models as a proxy for structural integrity. We used
the block number metric, because it is commonly used in empirical
research [5, 9, 24] and computationally inexpensive, considering the
large dataset. SMOKE preserved the number of blocks for all models.
To gauge functionality removal, we checked if models were compi-
lable before and after anonymization, as shown in Table 1. More
than half of the compilable models were no longer compilable after
the anonymization. Interestingly, a few models became compilable
(without true functionality), likely because inconsistencies, along
with all other functionality of the original models, were removed.
We did not perform model simulations due to the unknown settings
for model input, output, other simulation parameters, and expected
results. We thus cannot verify automatically, whether the sanitized
model is “broken enough”. Nevertheless, the anonymization already
has a significant impact on compilation.

6 Related Work
While obfuscation in traditional text-based programming languages
is a well-established discipline with decades of research [8, 10], we
found only limited prior work on the obfuscation of Simulink mod-
els. Most notably, Tevajärvi [27] recently conducted a literature
review of existingmodel obfuscation techniques and then compared
them in terms of a case study. Amongst others, they successfully
used functional mock-up interfaces and obfuscating generated code
to preserve functionality while hiding sensitive data or function-
ality. However, the resulting black boxes are then in a different,
uninspectable format, rather than remaining as (Simulink) models.

Simulink features the Protected Model Creator,4 a versatile tool
that again transforms Simulink models into black boxes of another
file format, or white boxes that are not editable. However, these im-
mutable white boxes do not anonymize at all. Other built-in options
to create black box versions are S-Functions, or static libraries.5

A subset of SMOKE’s layout obfuscations could be found in a
tool by Ohashi6 and the Obfuscate-Model tool by Jaskolka et al.7.
The former, however, is unmaintained and broken since at least
2017, according to the tool’s reviews on MATLAB FileExchange.
The latter is more mature and has been utilized for obfuscation
in an industry-research partnership [12, 18]. Though it supports
only layout obfuscations, we built SMOKE based on a fork of the
Obfuscate-Model tool, extending it with new capabilities (all func-
tional sanitization introduced in Section 3 as well as additional
4https://www.mathworks.com/help/rtw/ref/protectedmodelcreator.html
5https://www.mathworks.com/matlabcentral/answers/91537-how-do-i-protect-the-
ip-of-my-simulink-model-when-sharing-it-with-others-who-may-include-it-in-
thei
6https://www.mathworks.com/matlabcentral/fileexchange/54359-model-
obfuscation-tool
7https://github.com/McSCert/Obfuscate-Model

https://github.com
https://www.mathworks.com/matlabcentral/fileexchange
https://www.mathworks.com/help/rtw/ref/protectedmodelcreator.html
https://www.mathworks.com/matlabcentral/answers/91537-how-do-i-protect-the-ip-of-my-simulink-model-when-sharing-it-with-others-who-may-include-it-in-thei
https://www.mathworks.com/matlabcentral/answers/91537-how-do-i-protect-the-ip-of-my-simulink-model-when-sharing-it-with-others-who-may-include-it-in-thei
https://www.mathworks.com/matlabcentral/answers/91537-how-do-i-protect-the-ip-of-my-simulink-model-when-sharing-it-with-others-who-may-include-it-in-thei
https://www.mathworks.com/matlabcentral/fileexchange/54359-model-obfuscation-tool
https://www.mathworks.com/matlabcentral/fileexchange/54359-model-obfuscation-tool
https://github.com/McSCert/Obfuscate-Model


SMOKE: Simulink Model Obfuscator Keeping Structure MoDELS Demos, September 22–27, 2024, Linz, Austria

layout obfuscation for resizing and repositioning of Blocks, and a
anonymization reset) refined prior capabilities (SMOKE recurses
into all the deep parts of models for its transformations: into de-
scendants of masked, read-protected, or linked Blocks, and variants
of Blocks), and fixed bugs (e.g., crashes on broken array indices
or uncaught exceptions for some transformations). Moreover, we
evaluated SMOKE’s functionality on a large model set.

7 Conclusion and Future Work
With SMOKE, we offer a versatile tool to selectively protect IP
from Simulink models, while their structure is preserved. Our hope
is that SMOKE will facilitate the collaboration of researchers and
industry partners, as it enables the selective protection of models
and their sharing with the research community for many research
areas.

We are currently integrating SMOKE as a filter step into a work-
flow of creating research data management containers[11, 14]. With
SMOKE, we ensure sensitive model parts are excluded, before they
become part of an immutable container. In the future, we hope that
Simulink will integrate features of SMOKE natively to make model
anonymization even more accessible. SMOKE is open-source8 and
easily extendable, with, e.g., obfuscation of specific subsystems.
Please let us know which features you’d like integrated.

8 Acknowledgements
This work was partially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under project number
NFDI 52/1 501930651.

References
[1] Tiago Amorim, Alexander Boll, Ferry Bachman, Timo Kehrer, Andreas Vogelsang,

and Hartmut Pohlheim. 2023. Simulink bus usage in practice: an empirical study.
Journal of Object Technology 22, 2 (July 2023), 2:1–14.

[2] Mike Atallah, Elisa Bertino, Ahmed Elmagarmid, Mohamed Ibrahim, and Vassilios
Verykios. 1999. Disclosure limitation of sensitive rules. In Proc. 1999 Workshop
on Knowledge and Data Engineering Exchange (KDEX’99). IEEE, 45–52.

[3] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. 2001. On the (Im)possibility of Obfuscating Pro-
grams. In Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference (Lecture Notes in Computer Science, Vol. 2139), Joe Kilian
(Ed.). Springer, 1–18.

[4] Vincent Bertram, Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael
von Wenckstern. 2017. Component and Connector Views in Practice: An Ex-
perience Report. In 20th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2017, Austin, TX, USA, September
17-22, 2017. IEEE Computer Society, 167–177.

[5] Alexander Boll, Florian Brokhausen, Tiago Amorim, Timo Kehrer, and Andreas
Vogelsang. 2021. Characteristics, potentials, and limitations of open-source
Simulink projects for empirical research. Software and Systems Modeling 20, 6
(2021), 2111–2130.

[6] Alexander Boll, Pooja Rani, Alexander Schultheiß, and Timo Kehrer. 2024. Beyond
code: Is there a difference between comments in visual and textual languages?
Journal of Systems and Software 215 (2024), 112087.

[7] Alexander Boll, Nicole Vieregg, and Timo Kehrer. 2022. Replicability of experi-
mental tool evaluations in model-based software and systems engineering with
MATLAB/Simulink. Innovations in Systems and Software Engineering (2022),
1–16.

[8] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco
Torchiano, and Paolo Tonella. 2014. A family of experiments to assess the
effectiveness and efficiency of source code obfuscation techniques. Empirical
Software Engineering 19 (2014), 1040–1074.

[9] Shafiul AzamChowdhury, Lina Sera Varghese, SoumikMohian, Taylor T. Johnson,
and Christoph Csallner. 2018. A curated corpus of simulink models for model-
based empirical studies. In Proceedings of the 4th International Workshop on

8https://github.com/lanpirot/SMOKE

Software Engineering for Smart Cyber-Physical Systems, ICSE 2018, Gothenburg,
Sweden, May 27, 2018, Tomás Bures, John S. Fitzgerald, Bradley R. Schmerl, and
Danny Weyns (Eds.). ACM, 45–48.

[10] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations. Technical Report. Department of Computer Science,
The University of Auckland, New Zealand.

[11] Michael Goedicke and Ulrike Lucke. 2022. Research Data Management in Com-
puter Science - NFDIxCS Approach. In 52. Jahrestagung der Gesellschaft für
Informatik, INFORMATIK 2022, Informatik in den Naturwissenschaften, 26. - 30.
September 2022, Hamburg (LNI, Vol. P-326), Daniel Demmler, Daniel Krupka, and
Hannes Federrath (Eds.). Gesellschaft für Informatik, Bonn, 1317–1328.

[12] Monika Jaskolka, Vera Pantelic, Alan Wassyng, and Mark Lawford. 2020. Sup-
porting Modularity in Simulink Models. arXiv:2007.10120 [cs.SE]

[13] Harold Klee and Randal Allen. 2018. Simulation of dynamic systems with MAT-
LAB® and Simulink®. Crc Press.

[14] Firas Al Laban, Jan Bernoth, Michael Goedicke, Ulrike Lucke, Michael Striewe,
Philipp Wieder, and Ramin Yahyapour. 2023. Establishing the Research Data
Management Container in NFDIxCS. In 1st Conference on Research Data Infras-
tructure - Connecting Communities, CoRDI 2023, Karlsruhe, Germany, September
12-14, 2023, York Sure-Vetter and Carole A. Goble (Eds.). TIB Open Publishing.

[15] Marcus Mikulcak, Paula Herber, Thomas Göthel, and Sabine Glesner. 2019. In-
formation Flow Analysis of Combined Simulink/Stateflow Models. Inf. Technol.
Control. 48, 2 (2019), 299–315.

[16] Peter Munk and Arne Nordmann. 2020. Model-based safety assessment with
SysML and component fault trees: application and lessons learned. Software and
Systems Modeling 19, 4 (2020), 889–910.

[17] Stanley R. M. Oliveira and Osmar R. Zaïane. 2003. Protecting Sensitive Knowledge
By Data Sanitization. In Proc. 3rd IEEE International Conference on Data Mining
(ICDM 2003), 19-22 December 2003, Melbourne, Florida, USA. IEEE Computer
Society, 613–616.

[18] Vera Pantelic, Steven Postma, Mark Lawford, Monika Jaskolka, Bennett Macken-
zie, Alexandre Korobkine, Marc Bender, Jeff Ong, Gordon Marks, and Alan
Wassyng. 2018. Software engineering practices and Simulink: bridging the gap.
International Journal on Software Tools for Technology Transfer 20 (2018), 95–117.

[19] Robert Reicherdt and Sabine Glesner. 2012. Slicing MATLAB Simulink models. In
34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE
Computer Society, 551–561.

[20] Alexander Schlie, Sandro Schulze, and Ina Schaefer. 2018. Comparing Multiple
MATLAB/Simulink Models Using Static Connectivity Matrix Analysis. In 2018
IEEE International Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 160–171.

[21] Alexander Schlie, David Wille, Sandro Schulze, Loek Cleophas, and Ina Schaefer.
2017. Detecting Variability in MATLAB/Simulink Models: An Industry-Inspired
Technique and its Evaluation. In Proceedings of the 21st International Systems and
Software Product Line Conference, SPLC 2017, Volume A, Sevilla, Spain, September
25-29, 2017, Myra B. Cohen, Mathieu Acher, Lidia Fuentes, Daniel Schall, Jan
Bosch, Rafael Capilla, Ebrahim Bagheri, Yingfei Xiong, Javier Troya, Antonio Ruiz
Cortés, and David Benavides (Eds.). ACM, 215–224.

[22] Sohil Lal Shrestha, Alexander Boll, Shafiul Azam Chowdhury, Timo Kehrer, and
Christoph Csallner. 2023. EvoSL: A Large Open-Source Corpus of Changes in
Simulink Models & Projects. In 26th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2023, Västerås, Sweden,
October 1-6, 2023. IEEE, 273–284.

[23] Sohil Lal Shrestha, Alexander Boll, Timo Kehrer, and Christoph Csallner. 2023.
ScoutSL: An Open-Source Simulink Search Engine. In ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS 2023
Companion, Västerås, Sweden, October 1-6, 2023. IEEE, 70–74.

[24] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2022.
SLNET: A Redistributable Corpus of 3rd-party SimulinkModels. In 19th IEEE/ACM
International Conference on Mining Software Repositories, MSR 2022, Pittsburgh,
PA, USA, May 23-24, 2022. ACM, 1–5.

[25] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2023.
Replicability Study: Corpora For Understanding Simulink Models & Projects.
In ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2023, New Orleans, LA, USA, October 26-27, 2023. IEEE, 1–12.

[26] Matthew Stephan and James R. Cordy. 2015. Identification of Simulink model
antipattern instances usingmodel clone detection. In 18th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MoDELS 2015,
Ottawa, ON, Canada, September 30 - October 2, 2015, Timothy Lethbridge, Jordi
Cabot, and Alexander Egyed (Eds.). IEEE Computer Society, 276–285.

[27] Juho Tevajärvi. 2023. Protecting Intellectual Property in Multi-Supplier Ship Pow-
ertrain Co-Simulation. Master’s Thesis. Aalto University, Otaniemi. Advisor(s)
Riku Ala-Laurinaho.

[28] Mark DWilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3, 1 (2016), 1–9.

https://github.com/lanpirot/SMOKE
https://arxiv.org/abs/2007.10120

	Abstract
	1 Introduction
	2 Background
	2.1 Simulink
	2.2 Obfuscation and Sanitization

	3 Tool Overview and Capabilities
	3.1 Design Rationale
	3.2 Transformation Workflow
	3.3 GUI Overview and User Interaction

	4 SMOKE in Action
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgements
	References

