
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

SMOKE2.0 Whitebox Anonymizing Intellectual

Property in Models While Preserving Structure

Alexander Boll, Manuel Ohrndorf and Timo Kehrer

Software Engineering Group, University of Bern, Switzerland.

*Corresponding author(s). E-mail(s): alexander.boll@unibe.ch;
Contributing authors: manuel.ohrndorf@unibe.ch;

timo.kehrer@unibe.ch;

Abstract

Simulink is widely used across various industries to model and simulate cyber-
physical systems. Most industry-built models contain sensitive intellectual prop-
erty, which prevents companies from sharing models with interested third parties,
such as researchers or collaborating companies. However, advancing model-based
engineering research requires access to such models – either to derive empiri-
cal insights or to evaluate new tools. While initiatives to replace industry-built
models with open-source alternatives exist, they offer only a limited remedy.
In this work, we introduce a novel approach with SMOKE, a Simulink obfus-
cation tool designed to selectively protect intellectual property within models.
This allows companies to share relevant parts of their models with researchers or
other third parties while safeguarding all sensitive information. SMOKE’s white-
box design preserves the model’s original format and structure, ensuring that
meaningful insights remain accessible. We evaluated the tool on an extensive set
of open-source models and found it successfully removes sensitive components,
while preserving model structure. A video demonstration of SMOKE is available
online at youtu.be/0i42BzgJAUA.

Keywords: Data Masking, Sanitization, Obfuscation, Anonymization, Abstraction,
Filtering, Open Science

1 Introduction

Across various industries, Simulink is a widely-used tool to design, implement and
simulate cyber-physical systems [1, 2]. The popularity of Simulink also gives rise to

1

https://youtu.be/0i42BzgJAUA

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

a considerable research interest, e.g., into better understanding Simulink models and
their evolution [3]. However, within the research community, it is well known that
companies often refrain from sharing their Simulink models to protect intellectual
property (IP) [4]. In some cases, industry partners share their models under severe
limitations, such as non-disclosure agreements, which strictly prohibit the publica-
tion of model files or any visual representations of the models. Companies may also
restrict access to models to company computers and locations. This practice cre-
ates significant challenges for the FAIR1 principles [5] in Simulink research and often
leaves researchers without useful study subjects [3]. The modeling research commu-
nity has begun addressing this issue by developing corpora of open-source Simulink
models [1, 3, 6, 7], which can serve as substitutes for proprietary models in research.
In general, however, open-source models are much smaller than industry models, and
are often no adequate substitutes [1, 4].

In this work, we introduce SMOKE: Simulink Model Obfuscator Keeping struc-
turE, an extensible, open-source tool for protecting intellectual property through
selective anonymization of Simulink models. Our goal is to anonymize models by
removing sensitive information while preserving their general usefulness, especially
for research. Thus, a model being anonymized using SMOKE is still a valid Simulink
model whose logical structure is isomorphic to the original one, yet exposing a dif-
ferent visual appearance and functional behavior, depending on the desired degree of
anonymization. Both kinds of modification are implemented through unidirectional
model transformations [8], i.e., they are non-reversible without logging or domain
knowledge. The first class of modifications are layout obfuscations, which preserve
functionality but reduce understandability. The second class comprises sanitization
techniques, which remove sensitive data or functionality. This is a concept we adapt
from database sanitization, originally developed for relational databases [9]. The
concrete transformations to be applied can be selected by the user, depending on
the desired degree of anonymization. SMOKE supports both interactive and non-
interactive selections of transformations, which are then composed to an executable
transformation workflow.

SMOKE addresses two use cases which are of primary interest for researchers. First,
it simplifies obtaining approval for publishing visual representations of Simulink mod-
els by selectively removing layout information. A precursor to SMOKE was already
previously used to obfuscate industry models, enabling the publication of screenshots
in scientific articles [10, 11]. Second, companies may permit further study or use of sani-
tized models where sensitive data or functionality is removed. As opposed to traditional
obfuscators concealing a program’s [12] or model’s [13] entire functionality within an
uninspectable and immutable virtual black box [14], our white-box anonymization
yields a native Simulink model open to further inspection. This means that the model
can be opened with the standard MATLAB/Simulink editor or other tools working
with Simulink models. A particular feature of SMOKE is that it preserves the logical
structure of the original models. Even if highly anonymized, the obtained ‘structure-
only’ models still remain valuable study subjects for many research interests. To
better understand various aspects of a model or its evolution, empirical research on

1Findability, Accessibility, Interoperability, and Reuse of digital assets.

2

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Simulink models often focuses on metrics related to model structure [1, 6, 15, 16], or
relies on third-party analysis tools such as clone detectors, differencing tools, slicers,
or variant and information flow analyzers that require an intact model structure to
function [17–21].

In addition to addressing researchers’ interest, SMOKE can also be employed by
industry partners themselves. In software value chains, models are developed in co-
engineering fashion, and such collaborations only work if the parties have access to the
models [22]. However, companies may still hesitate to grant full access to others or may
need to comply with various competition laws [23]. Moreover, (partially) anonymized
models can be indexed by model search engines, as they can search models by basic
metric structure [7, 24, 25]. This way, interested parties may find models according to
basic information, and can get into contact with the owners to agree on the terms of
full access.

We give an overview of SMOKE’s anonymization capabilities, and showcase the
effect of interactively applying a subset of those on a realistic example. Moreover,
we report about our evaluation applying SMOKE’s full anonymization capabilities on
thousands of open-source models taken from SLNET [6], with a particular focus on
evaluating its general applicability and functional correctness. While SMOKE focuses
on Simulink models, we argue that other modeling ecosystems, such as UML, SysML,
Modelica, etc., could also benefit from a layout or functionality anonymizer [26].

Our tool SMOKE, written in MATLAB, along with its documentation, and
all artifacts from our experimental evaluation, are open-source and available at
github.com/lanpirot/SMOKE. A brief video demonstration of SMOKE is available
online at youtu.be/0i42BzgJAUA.

This paper is a substantial extension of the short paper “SMOKE: Simulink Model
Obfuscator Keeping Structure” by Boll et al. [27], demonstrated at the MODELS’24
demo track. We have built upon our prior work through the following improvements:

• We updated SMOKE, extending it with new anonymization functionality. Notably,
it is now applicable to library models, and anonymizations can be performed on
user-selected scopes of the model.

• We repeated our entire evaluation, incorporating the aforementioned new function-
ality and now including library models. We greatly improved the evaluation of the
behavior (non-)preservation of SMOKE.

• We further added discussions on SMOKE’s coverage and threats to validity.
• Leveraging the expanded space available compared to the original short paper,

we have meticulously rewritten and significantly enhanced all sections, notably
Sections 2 to 5, from scratch. This revision includes extensive additional detail and
thorough explanations that were not feasible to incorporate previously.

2 Background on Simulink and Obfuscation
Techniques

In this section, we first lay the foundational background knowledge of Simulink that is
needed for this paper. We then elaborate on obfuscation and sanitization techniques,
and how they can be applied in Simulink. Note that we do not discuss a completely

3

https://github.com/lanpirot/SMOKE
https://youtu.be/0i42BzgJAUA

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Copyright	1990-2022	The	MathWorks,	Inc.

Simulating	Automatic	Climate	Control	Systems

x

Proportion	fan	speed

9

User	Setpoint	in	Celsius

Torque	Comp

Thermometer	Display

SetPTemp

IntTemp

	ACAct

	HeaterAct

RequiredTemp

BlowerOut

Temperature	Control	Chart

System	Trigger

++−

−+

+++

Celsius	to	Kelvin

Kelvin	to	Celsius

Req	Tout

Recycling	Air1

Recycling	Air
Recycle
Air	On

?

Mass	Flow	Rate

Interior	Dynamics

Req	Temp	change

Blower	Speed	proportion

External	Temp

Internal	temp

Flap	Angle

Exit	Temp	(heater)

Tout

Heater	Control

Heat	Sources

Heat	from	occupants
No.	of	occupants:	1

Flap	Pos

Fan	Speed	rate

18

External	Temperature	in	Celsius

Engine	Speed
Distribution1

Distribution	
RequestDistribution	

Engine	Speed

Comp	Torque

Blower	Speed	Proportion

Internal	Temp

Exit	Temp	(AC)

AC	Control

DOC
Text

Figure 1: An exemplary Simulink model (with the name sldemo auto climate) show-
ing various kinds of Blocks, connected by Lines.

exhaustive list of obfuscation techniques, but focus on those that are relevant to our
context, i.e., the ones that are applicable to Simulink models, while keeping structural
integrity.

2.1 Simulink

Simulink [28] is a modeling language and versatile integrated development environment
developed by Mathworks. It is based on and integrated into the MATLAB IDE and
can be used for abstract modeling, implementation of functionality, simulation, and
code generation. As its graphical modeling language is intuitive to use and understand,
it is often used as a low-code development platform [29] in non-programmer domains
like automotive, aerospace, medical and other technical industry domains [2, 30, 31].

A Simulink model consists of Blocks, which can be connected by Lines – both
placed on a modeling canvas, cf. Figure 1.2 Lines transport values from Block out-
port(s) to Block inport(s). Blocks transform their input from their inport(s) to an
output which they emit via their outport(s). As a model grows, it can be partitioned
using special Subsystem Blocks that nest Blocks and Signals, allowing developers to
hierarchically structure their models. Subsystem Blocks can also nest other Subsystem
Blocks and with this, developers can hierarchically structure their models.

The Simulink IDE offers different model views via the Subsystem Blocks. In a view,
only the direct content of the currently selected Subsystem is visible, while Subsystems
hide their nested implementation details from the outer view. While Figure 1 depicts

2Example Simulink model from mathworks.com/help/simulink/slref/simulating-automatic-climate-
control-systems.html

4

mathworks.com/help/simulink/slref/simulating-automatic-climate-control-systems.html
mathworks.com/help/simulink/slref/simulating-automatic-climate-control-systems.html

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

(a) (b)

Figure 2: The inner view of two Simulink Subsystems of the model in Figure 1: the
Subsystem in Figure 2a transforms temperature from Kelvin to Celsius: C = K −
273, the Subsystem in Figure 2b computes the total heat generation of N occupants:
TotalPower = 100 ·N .

the root view of a model, the Subsystems’ inner views of the Subsystems ‘Kelvin to
Celsius’ (lower right of Figure 1) and ‘Heat Sources’ (bottom middle of Figure 1) is
given in other views, shown in Figure 2. The root Subsystem, i.e., the model itself,
may also have inports and outports, which act as the input and output of the model.
In many models, inports are driven by physical sensors and outputs drive actuators.
Additionally, there are also models without input or output, e.g., library models that
contain useful sets of custom Blocks, or functionality used in other models where
they can be imported and reused. While Simulink already offers an extensive set of
different Block types, users can use this mechanism to define their own (complex) Block
behaviors. In addition, each Simulink Block comes with its own set of Parameters3

that can be adjusted individually for each instance of the Block, cf. Figure 7a. This
variety of Block types and their individual Parameters offer a comprehensive range of
design options supporting both static modeling (memory-less systems), and dynamic
modeling (time-evolving systems with states).

In this work, we define the model’s structure as a typed graph of Blocks connected
by Lines (cf. Figure 3). When we speak of structure-preserving anonymizations, or
transformations, we are thus looking for obfuscations and sanitizations that do not
alter the underlying graph of Blocks and Lines.

2.2 Obfuscation Techniques

Obfuscations are transformations that change aspects of a program, while preserving
its functional behavior. Obfuscating a program – in our case ‘a program’ is to be
understood as ‘a model’ – increases the difficulty of understanding, or accessing its
purpose or logic [33]. Using obfuscations, one can thus protect the intellectual property
of a program and make it harder to reuse or repurpose it.

Collberg et al. [12] identify three basic classes of obfuscation: (1) layout obfuscation,
(2) data obfuscation, and (3) control obfuscation. (1) Layout obfuscations are simple
transformations that adapt documentation, names, or formatting, usually by remov-
ing them, resetting them to default values, or replacing them by arbitrary values. As

3In EMF models, the counterpart of Parameters are called Attributes [32]. The Parameters of a Block
define how it exactly behaves during simulation, and are not external output/input like parameters in
textual programming languages.

5

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

sldemo auto climate

Distribution

Distribution Request

Thermometer Display

DocBlock

. . .

. . .

Heat Sources

Power/occupant

Power/occupant → #occupants

#occupants

#occupants → Total Power

Total Power

AC Control
. . .

. . .

Temperature Control Chart
. . .

. . .
.

Figure 3: The partial structure of the model of Figure 1. All structure elements are
part of this tree, hierarchically organized by the Subsystems. The root Subsystem is
on the very left. Each Subsystem’s child is a Block or Line within it. Only the content
of the Subsystem ‘Heat Sources’ (cf. Figure 2b) is fully shown, all other content is
only hinted at.

Simulink is a graphical language, it offers many more layout obfuscations than classi-
cal textual languages, e.g., Blocks and Lines can be repositioned, resized, or recolored,
fonts can be changed, and media elements can be used. (2) Data obfuscations alter
the storage, encoding, or ordering of data. A different encoding, or even encryption,
makes it difficult to interpret the data that is being processed in the program. Addi-
tional data abstraction transformations can be splitting up related data, or bunching
up data that is unrelated. Simulink offers multiple data types, like int8, double,

boolean,4 with which one could obfuscate data encoding. Additionally, transforma-
tions on data abstraction are possible by using BUS-Blocks, that bundle up data from
multiple Lines into one. (3) Control obfuscation manipulates the abstraction layers,
adds useless conditions, or dead code. Obfuscating the abstraction layers is similar
to the obfuscation of data abstraction: the removal of meaningful hierarchy layers or
the addition of extraneous ones. In Simulink this can be achieved, e.g., by resolving
Subsystems or adding new arbitrary ones into the model.

4It is further possible to create new, custom data types.

6

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

2.3 Sanitization Techniques

While obfuscation does not change the behavior of a program, sanitization does. In
this work, we generalize the concept of data sanitization [9, 34] to our purpose of model
sanitization: data sanitization is applied on sensitive data in relational databases by
selectively removing parts of the database, while valuable insights into the rest of
the data still remain possible. Data sanitization is performed so that the protected
database can be shared with others, without risking the sensitive data being leaked.

In our case, we want to preserve the structure of a model, so that valuable insights
into the model are preserved, while the model behavior may be removed, changed or
even completely broken. This means, the model should still be syntactically correct
after all sanitization transformations, and still be loadable and inspectable in the IDE.
On the other hand, the sanitized model should not show the same behavior, which
means it either does not compile anymore, the simulation crashes or stops prematurely,
or, given the same input, the output of the model changes.

As the structure of the model shall remain stable, the only way to alter the model
functionality is to change Block or model Parameters. Such changes either result in
altered behavior of Block calculations and thus overall model behavior, or model
misconfigurations that lead to non-compilability or simulation crashes.

3 Related Work

3.1 Simulink-specific Obfuscation

While obfuscation in traditional text-based programming languages is a well-
established discipline with decades of research [12, 33], we found only limited prior
work on the obfuscation of Simulink models.

Simulink itself features the Protected Model Creator,5 a versatile tool that trans-
forms Simulink models into black boxes of another file format, or white boxes that
are not editable. However, these immutable white boxes do not anonymize at all.
Other built-in options to create black box versions are so-called S-Functions or static
libraries.6

A subset of SMOKE’s layout obfuscations could be found in a tool by Ohashi7 and
the Obfuscate-Model tool by Jaskolka et al.8 The former, however, is unmaintained and
broken since at least 2017, according to the tool’s reviews on MATLAB FileExchange.
The latter is more mature and has been utilized for obfuscation in an industry-research
partnership [10, 11]. Though it supports only layout obfuscations, we built SMOKE
based on a fork of the Obfuscate-Model tool, extending it with new capabilities, refined
prior capabilities, and fixed bugs. For a detailed list of all changes and improvements,
see Section 4.2.1. Moreover, we evaluated SMOKE’s functionality on a large model set.

5https://www.mathworks.com/help/rtw/ref/protectedmodelcreator.html
6https://www.mathworks.com/matlabcentral/answers/91537-how-do-i-protect-the-ip-of-my-simulin

k-model-when-sharing-it-with-others-who-may-include-it-in-thei
7https://www.mathworks.com/matlabcentral/fileexchange/54359-model-obfuscation-tool
8https://github.com/McSCert/Obfuscate-Model

7

https://www.mathworks.com/help/rtw/ref/protectedmodelcreator.html
https://www.mathworks.com/matlabcentral/answers/91537-how-do-i-protect-the-ip-of-my-simulink-model-when-sharing-it-with-others-who-may-include-it-in-thei
https://www.mathworks.com/matlabcentral/answers/91537-how-do-i-protect-the-ip-of-my-simulink-model-when-sharing-it-with-others-who-may-include-it-in-thei
https://www.mathworks.com/matlabcentral/fileexchange/54359-model-obfuscation-tool
https://github.com/McSCert/Obfuscate-Model

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

3.2 Obfuscating Other Model Types

Obfuscation approaches are also suggested in various other domains, such as con-
ceptual models, business process models, or ML models. An overview is given by
Tevajärvi [13] who recently conducted a literature review of existing model obfusca-
tion techniques and then compared them in terms of a case study. Among others, they
successfully used functional mock-up interfaces and obfuscating generated code to pre-
serve functionality while hiding sensitive data or functionality. However, the resulting
black boxes are then in a different, opaque format.

Fill [35] discusses obfuscating conceptual models with the intent of making them
shareable, but his transformation breaks the structure by splitting models into multiple
parts. Other transformations he suggested break the model’s syntax. Nacer et al. [36]
also explore business process model obfuscation by fragmenting models.

A further concept of model sharing in a co-engineering scenario with multiple roles
(see Martinez et al. [37]) is explored in the work of Weber et al. [38]. In a first step,
the model is split into sub-modules and their interfaces. Each sub-module is encrypted
and only decryptable by authorized parties – effectively fragmenting the model. In
our tool, selective aspects of the model (e.g., whole sub-modules or only sensitive
properties within the model or some sub-modules) are removed.

Sihler et al. [22] build an obfuscation tool for IRIS, a graphical modeling tool for
technology road maps (TRM). The tool can perform various one-way transformations
with the intent of preserving model behavior, in addition to the model still being
in the same file format. During their transformations, the model structure becomes
completely removed, though. Their transformations provably uphold criteria, such
as self-containment of the model parts that are left; no inference possible on the
obfuscated model parts; and preserving behavior. This makes their tool similar to
SMOKE’s use case of obfuscation, while preserving behavior. However, SMOKE also
serves the use case of selectively sanitizing behavior and preserving model structure.

Less related are the ideas of Gupta et al. [39], who protects CAD models by insert-
ing sabotaging elements into the model that hamper reproducing physical instances
of the model. One may interpret this as the model structure largely being preserved,
while its behavior is changed.

Finally, the ModelObfuscator by Zhou et al. [40] is intended for Deep Learning
models and uses various obfuscation techniques, some of them structure-preserving.
However, many of them intentionally alter the model’s structure, such as extra layer
injection.

4 Approach and Tool

4.1 Approach

The main goal of SMOKE is to support users with the selective removal of sensitive
intellectual property from their models via obfuscation, or sanitization, while keeping
the model structurally intact and loadable. We thus create one-way and resilient [41]
(aka. unidirectional [8]) obfuscation and sanitization transformations in Simulink that
fulfill these criteria for SMOKE.

8

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

To come up with a list of possible transformations, we first went over the metamodel
approximation of Simulink from the Massif group (referenced in [32]) and identified
model elements, that could be altered to obfuscate or sanitize. In a second step, we
consulted the Simulink Documentation for model elements that are not listed in this
metamodel (e.g., ‘Model Information’). In a last step (see Section 5.5), we inspected
the raw model files for possibly sensitive user information in elements, that were still
present in models after we applied transformations.

As Simulink is a vast ecosystem,9 we can’t offer an obfuscation or sanitization
option for every model element. Many model elements interact with each other in
complex ways, which is impossible to deal with in a research prototype. Instead, we
chose to offer options for those transformations that we deem the most intuitive ones:
transformations on elements which are used often, are prominently displayed to users,
or are used to hold sensitive or model-wide information. In Section 4.2 we will see
though, that SMOKE can be easily extended to obfuscate or sanitize other model
elements as users may seem fit.

Our extensive list of selectable elements to be obfuscated and/or sanitized can be
seen in the main menu of SMOKE in Figure 4: in the lower right block ‘Optical’ is the
list of obfuscations, in the lower left block ‘Functional’ is the list of sanitizations. In
the following, we will shortly elaborate on a selection of these shown transformations,
and our rationale behind them.

4.1.1 Obfuscations

In Simulink, a model’s primary Parameters, such as CreatorName, CreationDate,

and ModifiedBy, are stored in its ‘Model Information’ Parameters. SMOKE can
remove these Parameters, i.e., reset them to default values, and thus disrupt the
model’s traceability. Next, Simulink offers various ways of commenting and document-
ing within models, such as ‘DocBlocks,’ ‘Annotations,’ and ‘Descriptions’. Note that
these documentation options are directly embedded into the model file, while addi-
tional model ‘Notes’ exist [42]. By removing such documentation SMOKE can impair
the model’s understandability. Additionally, Simulink offers a feature called ‘Subsys-
tem Content Preview,’ which allows users to preview the contents of a Subsystem, such
as the blue Subsystem shown on the left of Figure 1. Disabling this preview ensures
that no external information is visible in the current model view, meaning screenshots
will only display information from the currently opened Subsystem. Furthermore, all
other obfuscation options shown in Figure 4 either remove custom names or cus-
tom design elements from the model, both of which negatively impact the model’s
understandability.

4.1.2 Sanitizations

In Simulink ‘Masks’ are used to hide and protect the internals of a Subsystem. This
can be a simple picture icon visually (e.g., the car seat picture on the Subsystem in the

9In addition to the hundreds of blocks Simulink already ships with, various toolboxes offer additional
Blocks. Each Block type has its own specific Parameters in addition to the common ones. We observed
more than 100 Block types and more than 10,000 Parameters. Finally, Simulink comes with its own sub-
languages: StateFlow, and SimScape. This results in a multitude of corner cases, that need to be dealt with,
if one strives for an exhaustive obfuscator.

9

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Figure 4: The main menu of SMOKE. The menu’s elements are described in
Section 4.3.1.

lower bottom of Figure 1), but can also offer complex custom Parameters. SMOKE
removes such Masks, and the bare Subsystems remain under them. ‘Block Callbacks’
are custom MATLAB scripts that are executed on certain events, like loading the
model or changing a view. They are powerful and can, e.g., check for the presence
of certain model elements, and depending on the result of the check, prevent the
saving of the model. Apart from a few undeletable Callbacks, SMOKE can remove
all others. ‘Dialog Parameters’ are probably the most important sanitizer, as all kinds
of Block functionality can be changed here for each Block individually (cf. Figure 7).
SMOKE will reset Parameters to Block default values, whenever possible. ‘Constants’
are special Blocks, that drive a constant input into the model. Constant Blocks’ values
are rest to either default number or string values, depending on their type. More
interestingly, users can embed a whole MATLAB script into a Function Block, which
are sanitized, i.e., their body is removed by activating ‘Simulink Functions’. We also
address various parts of the Simulink sub-language ‘Stateflow’ which offers to embed
state machines or stateflows into Blocks, with more fine-grained options.

10

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

4.1.3 Structural Transformations

The options ‘Squash Subsystems’ and ‘Implementation’ (the only unchecked options in
the bottom of the panels ‘Functional’ and ‘Optical’ in Figure 4) do in fact change the
model structure. We still incorporated them into SMOKE, as they were recommended
by users. ‘Squash Subsystems’ removes all Subsystems, i.e., they get resolved and a
completely flattened model hierarchy emerges. When checking ‘Implementation’ all
Blocks and Lines apart from Inports and Outports of the current Subsystem get
removed. This option is useful when certain parts of the model can be shared, while
other parts are so sensitive that even their structure needs to be removed.

4.1.4 Reversing Transformations

In general, obfuscation and sanitization transformations should be hard or impossible
to reverse; otherwise, they need not to be applied. We thus implement (see Section 4.2)
all our transformations to actually remove or reset, and not to just hide model infor-
mation. In particular, we remove model elements, whenever possible. Elements, whose
removal would result in a changed structure, or broken model, are reset to default
values. As such custom information is removed, it can only be reconstructed using
additional domain knowledge or by extrapolating other model information that was
not selected to be removed by the user.

Additionally, we made sure, that model information is actually permanently
removed, once a transformation was applied by the user. There appear to be only two
possibilities for reversing any deletion: either the deleted information, while not visi-
ble to the user in the Simulink IDE, may still be part of the raw model file (1), or the
Simulink IDE may offer an “undo action” functionality to restore the information (2).
Regarding (1): we compared pairs of models before and after transformations, manu-
ally and using scripts, to make sure the deleted information is indeed removed from
the raw model file. We found our transformations to completely remove the selected
information from the raw file. As the model information is saved into and recreated
from this file, this path of transformation reversal is thus impossible.
Regarding (2): Simulink does offer to undo IDE actions from its current session. Once
a model is saved and closed in the IDE, the edit history dissipates and is not recov-
erable from the saved file.10 Furthermore, the transformations SMOKE calls are not
reversible in the first place, as they are not IDE edits, but edits executed by scripted
MATLAB transformations, as shown in Section 4.2. MATLAB can currently only undo
IDE edits, though.
In conclusion: we are positive, that sharing a SMOKE-transformed file will remove all
the user-selected information permanently and irreversibly.

4.1.5 SMOKEing other Modeling Languages

Most ideas we present in this paper, are similarly applicable to obfuscate or sanitize
models created in other modeling languages. One simply has to choose what kind of
information shall be preserved in the model (in our case, the model structure and
ability to parse it with the IDE), and what types of information can or should be

10This applies to MATLAB versions through R2025a and is expected to remain valid in future versions.

11

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

GUI
Interface

Batch
Interface

Scopes
Transformations

Sensitive Input
Anonymized

Output

SMOKE Pipeline

Element
Removals

Find
Elements

Unlock
Dereference/

Unlink

Parameter
Resets

Element
Renamings

...

Figure 5: SMOKE’s architecture: its pipeline of model transformations can be invoked
from the GUI or in batch mode.

removed. For modeling languages with a known metamodel and fewer Block types
and Parametrical corner cases than Simulink, it may also be possible to automat-
ically derive obfuscation/sanitization transformations directly from the metamodel.
Mathworks, however, never published Simulink’s metamodel, and only the unofficial
approximation by the Massif group [32] exists.

4.2 Implementation and Extensibility

We implemented SMOKE11 in the MATLAB scripting language as a stan-
dalone application. Every transformation uses the Simulink model API of MAT-
LAB, to alter the model via functions such as delete(<modelElement>), or
set parameter(<blockID>,<Parameter>,<newValue>). We did not directly alter the
model’s raw XML files, as this risks breaking the model, i.e., making it impossible to
load or edit the model.

After starting the SMOKE app, the user chooses a Simulink model as input, and
then selects transformations (cf. Section 4.3.1) to be applied on the model. SMOKE
transforms a model through a pipeline architecture, cf. Figure 5. If the user chooses
multiple transformations, they will be applied sequentially in a pipeline architecture.
Before any transformation takes place, the model and all its Blocks are unlocked so
they are editable in the further process. Next, the model references are resolved and
library links are removed, as edits to them are not allowed by Simulink, otherwise.
Finally, all selected transformations are applied sequentially.

Each transformation iterates over all the elements it pertains to and transforms
them one by one, e.g., the DocBlock removal iterates over all DocBlocks. To ensure that
SMOKE preserves the model structure, every transformation that is called removes
exactly one model element or resets exactly one Parameter at a time. We only ever
remove Annotations and DocBlocks (they are not structurally relevant) and check
whether a Parameter change affects the model structure before attempting to change

11Available at https://github.com/lanpirot/SMOKE.

12

https://github.com/lanpirot/SMOKE

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

it. We thus guarantee structure-preservation by construction. For most transforma-
tions, our implementation is trivial, with just a few necessary interventions to keep
the model intact, e.g., names of Blocks have to be unique in each view, or refer-
ences to names have to be updated appropriately. For the resetting of names, we
choose a trivial naming scheme, e.g., every Block will get the name <block type of

Block><Number>.
One of the more interesting transformations is our sub-script

removeDialogParameters.m. Here, all Blocks’ Parameters with custom values shall
be reset. Simulink does not offer a direct functionality for such a reset, and also does
not give default values to which to reset them to. We thus create and insert a dummy
Block of the same type into the model, and read out, and copy its values for Param-
eters. Sometimes dummy Blocks do not have all Dialog Parameters of the actual
Block (c.f. also Figure 7, where the Parameter list changes after transformation). In
this case, we reset Parameters that are numeric to 0 and string type to the empty
word ’’. Further, we preserve some Parameters of Blocks, that would alter the model
structure: we found, e.g., 7 Parameters that change the number of ports of a Block.
Resetting them could remove the incoming or outgoing Signal Lines of the Block and
thus break the model structure. After the Block’s Parameters are reset, we clean up
the model by removing the temporary dummy Block again. To reset a Block’s size,
we use the same technique and copy a dummy Block’s default dimensions.

Our transformations’ implementation is optimistic [43], i.e., our transformations
may try to change or remove model elements that could break the model. Breaking
transformations are caught by Simulink’s error detection though and we simply skip
the transformation for elements causing such errors, thus leaving the model syntacti-
cally correct. Some examples that get caught are: certain Blocks are not resizable; some
model elements cannot be removed as Callback Functions are dependent on them, etc.

As each transformation takes and leaves a structurally intact model, most trans-
formation orderings are interchangeable. For best performance, SMOKE still performs
according to a partial ordering: It is best to start with transformations that remove
model elements, like Blocks. This ensures that no transformation is performed on ele-
ments that are later removed, anyway. The removal of sizes and positions should be
performed last. Resetting the shapes and sizes of Blocks, in the penultimate step,
ensures that potential text can still be completely displayed. The removal of posi-
tions should be the last transformation: here, all Blocks and their sizes are taken into
account to achieve visually pleasing diagrams without any overlap of model elements.

For debugging purposes, we found it best to move renaming transformations to
the back, as it is much easier to quickly match the original model and its transformed
counterpart this way. For an easier comparison of the model pair, it’s also best to
deselect size and position removal, as then all elements ‘stay in their place’ and can
be matched visually at a glance.

To extend SMOKE with new transformations, users can either: (1) add a trans-
formation to their suitable transformation list within ‘element removals’, ‘parameter
resets’, and ‘element renamings’ (the lower middle boxes in Figure 5); (2) append it in
the ‘. . .’ box. The sole requirement for any new transformation is that it must preserve

13

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

syntactic correctness – that is, it should accept a valid Simulink model as input and
produce a valid Simulink model as output, consistent with all prior transformations.

4.2.1 Comparison of SMOKE with Prior Versions

Our application is based on a predecessor app called Obfuscate Model12 by Jaskolka
et al. Here, we first compare Obfuscate Model to SMOKE in the state of the publica-
tion of [27], i.e., SMOKE1.0. Next, we compare SMOKE1.0 to SMOKE in this paper’s
state, i.e., SMOKE2.0.

Jaskolka et al. built a Simulink model obfuscation tool written in MATLAB.
Besides some bug fixes (e.g., crashes on broken array indices), adding exception
handling, and a slight redesign of the UI, in SMOKE1.0 we:

• added various functional transformations. Obfuscate Model was restricted to
graphical obfuscations only.

• added the graphical obfuscations for resetting block position and block sizes.
• enabled deep obfuscations, where SMOKE1.0 also descends into masked, protected,

variant or linked Blocks. These were not transformed before.
• added a “back up” option to quickly reset the transformation process and recover

the original model.

Since [27], we fixed some further bugs and sped up SMOKE2.0’s execution, as well
as:

• The user can choose the location or scope where to apply transformations. This
way, some parts of the model can be kept in their original state or be transformed
differently than others.

• SMOKE2.0 can be applied to locked (library) models, which makes it applicable to
all types of Simulink models, now.

• We added the most radical transformation: removing the complete implementation
of a Subsystem. The whole local Subsystem tree is thus pruned.

• We added an obfuscation that removes the Subsystem hierarchy, and thus “flattens”
the model, as all model elements are put into the same hierarchy level.

• We added a sanitization that removes Simulink Function bodies.

4.3 SMOKE in Action

4.3.1 Menu and User Interaction

The menu screen of SMOKE is presented to the user right at startup. At startup, the
boxes are pre-checked as shown in Figure 4. In the upper line, the model slated for
transformation is shown. For this, SMOKE automatically chooses the last model that
is opened by the user. All chosen transformations will later be performed on this model.
Next, in the second line, the user can select the scope of all chosen transformations.
Either the complete model gets transformed, only the currently selected Subsystem
and its direct elements, or a whole Subsystem Tree, i.e., the current Subsystem and its
descendants. After that, users choose how to handle model references and library links.

12https://github.com/McSCert/Obfuscate-Model

14

https://github.com/McSCert/Obfuscate-Model

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

In the lower left box, all options that remove model functionality, i.e., sanitizations,
are listed. In the lower right box, all options pertaining to obfuscations are listed,
which leave model functionality intact. On the bottom right are the action buttons.
Two buttons for convenience that check all or none of the boxes. The ‘Obfuscate’
button triggers the obfuscations and sanitizations the user chose. The ‘Back up’ button
reverts the model to its original, i.e., last saved state.

We envision two main user journeys using the GUI: (1) apply all pre-selected
transformations as shown in Figure 4, which removes everything but the main model
structure, (2) start with few transformations and selectively apply more and more of
them, perhaps in different scopes, until all sensitive information is removed. When the
user is satisfied with the model’s state, they can save it, and it is ready to be shared.

In addition to SMOKE’s interactive mode, it can also be called via MATLAB’s
scripting API. In this way, a whole project’s models can be anonymized in batch mode,
using pre-selected transformations. We used this mode in our evaluation in Section 5
to handle thousands of models at a time.

4.3.2 Exemplary Obfuscation

To give an intuitive overview of the capabilities and impact of SMOKE, we give an
exemplary user journey of a model’s obfuscation (Figure 6) and sanitization (Figure 7)
of the model from Figure 1. In a first step, a user chooses to remove all documentation
elements, labels and names, which leaves a completely anonymous model in Figure 6a.
The model’s layout otherwise is completely unchanged, and a visual mapping from
the original is trivial. Next, the user decides to further flatten the model’s hierarchy
and all Subsystems in the model get resolved. This affects some Subsystems on the
left and lower side of the model, which get replaced by their inner Blocks in Figure 6b.
To further obfuscate the model, the user removes the Blocks’ colors and resets their
sizes in Figure 6c. In a final step, the user obtains a clean model layout by using
SMOKE’s autopositioning feature, with which one can cycle through semi-random
layout arrangements. The final version is now completely obfuscated, while preserving
the model structure and functionality. The original model from Figure 1 is hardly
recognizable in its final form in Figure 6c.

If the user decides to (perhaps additionally to the obfuscation) sanitize the model,
they can choose to apply various transformations affecting functionality (cf. lower left
options in Figure 4). Most of these effects are not immediately visible in the IDE view,
in contrast to the obvious obfuscation transformations. However, a Block’s Parameters
and their values can be inspected in popup menus like the one given in Figure 7a. If
the user decides to reset the ‘Dialog Parameters’ some of the Block’s Parameters are
reset to their default values. For this Block’s reset, the conditional Parameter ‘Sample
time’ is revealed in Figure 7b. Changing a Block’s Parameters can have a dramatic
functional impact, as can be seen for the Pulse Generator Block from Figure 7, whose
behavior changed from the one shown in Figure 8a to the one in Figure 8b, after the
Parameter reset shown in Figure 7.

15

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

x

++−

−+

+++

(a)

x

++

++−

−+

+++

++

−+

(b)

x

+

+

+
+

−

−
+

+
+

+

+

+

−

+

(c)

x

+

+
+

+
−

−
+

+
+

+

+

+

−

+

(d)

Figure 6: Step-wise obfuscation of the model from Figure 1. First, Annotations,
Docblocks, labels and names are removed in Figure 6a. The Subsystem hierarchy is
flattened in Figure 6b. Then, the Block colors and sizes are reset in Figure 6c. Finally,
in Figure 6d the Block and Line positions are reset.

5 Evaluation

To ensure that SMOKE works as intended and designed, we test its behavior in mul-
tiple ways: we test, whether SMOKE’s obfuscation preserves structural integrity for
all its transformations in Section 5.2, whether SMOKE’s obfuscation does not alter a
model’s behavior in Section 5.3, and whether SMOKE’s sanitization does alter model
behavior in Section 5.4. We further check SMOKE’s coverage in Section 5.5. For all our
experiments, we use a diverse set of models, which we briefly introduce in Section 5.1.

16

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

(a) (b)

Figure 7: Figure 7a gives a snippet from the popup menu of the Parameters of the
Pulse Generator Block (located in the upper left in Figure 1, called ‘System Trigger’).
Users can alter various Block specific Parameters in this menu. Figure 7b gives the
Block’s Parameters after sanitization: the Parameters ‘Pulse type’, ‘Period’, and ‘Pulse
Width’ are affected by the resetting of Parameters. Due to the sanitization, other
default Block Parameters may become accessible, like ‘Sample time‘ in this case.

5.1 Experimental Design

5.1.1 Subjects and Setup

As described earlier, Simulink is a vast and diverse ecosystem. To ensure that the var-
ious kinds of models and use cases are covered by SMOKE, we apply SMOKE on the
model collection SLNET [6]. This is a comprehensive set of 9,105 open-source mod-
els covering multiple domains like electronics, aerospace, robotics, or medicine. The
collection encompasses small and big models for various purposes like toy projects,
industrial application, etc. SLNET was previously used as a benchmark set in other
empirical studies on Simulink models [42, 44]. 8,814 of the models were loadable error-
free in our setup of Simulink with MATLAB R2024b on our laptop with Windows11,
96GB RAM, and Intel i9-13980HX processor. Models that were not loadable were not
necessarily broken, but typically had some libraries missing that were needed in call-
backs of Blocks. Five more models were excluded from our evaluation, as they caused
MATLAB crashes during model simulation or model backup – both of these func-
tions are called in our evaluation pipeline. This left 8,809 models for our evaluation.
In terms our analysis of these models presented in the remainder of this section, we
found more than 160 unique Block types and more than 10,000 unique types of Block
Parameters that interact in various, complex ways. Thus, SLNET presents a large set
of numerous challenging corner cases for SMOKE.

In our evaluation, we applied SMOKE sequentially on each SLNET model to obtain
a pair of an original model and a transformed model. We then analyzed each pair
further as described in the next sections.

17

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

(a) (b)

Figure 8: The exemplary effect of resetting Dialog Parameters: the original Block
(Figure 7a) produces rapid pulses (Figure 8a), while the sanitized version (Figure 7b)
has a much longer cycle length (Figure 8b).

5.1.2 Measuring Robustness, Performance, and Structural
Integrity

In a first step, we measured the robustness of SMOKE, i.e., how often SMOKE was
applicable to our models without error. We also recorded SMOKE’s runtime per-
formance, e.g., transformed Blocks per second, when applying the complete list of
obfuscations and sanitizations that are shown as checked in Figure 4.

One of our goals of SMOKE is that it does not alter a model’s structure, for
both sanitization and obfuscation. Our first approach of validating the structural
integrity was to employ an existing model comparison tool. However, the built-in tool
of Simulink13 was not able to accurately match pairs of original and transformed mod-
els. This was surprising, as it even failed to match easy cases like the one shown in
Figure 9. There, the Model Comparison tool erroneously matched the green colored
and the blue colored blocks of this small Subsystem. In our second attempt, we tried
the clone detection tools Conqat and SIMONE. However, we did not get Conqat to
run, and SIMONE is already outdated, as it is only able to handle .mdl models.14

We thus employed a signature-based model comparison [45], using model metrics
for which we developed evaluation scripts specifically for this assessment. It uses simple
model metrics like the number of Blocks, Lines, Subsystems, unique Block types of a
model, and its cyclomatic complexity. All these metrics were either used previously in
the literature [1, 3], or are given as relevant by Simulink researchers themselves [7].
We classify a model to be structurally integral if its signature remained unchanged.

5.1.3 Behavioral (Non-)Integrity of Transformations

In regard to the preservation of model behavior, our goal with SMOKE is two-fold:
all obfuscation transformations shall preserve the original model’s behavior, while

13mathworks.com/help/simulink/model-comparison.html
14Simulink uses .slx models by default since 2012.

18

mathworks.com/help/simulink/model-comparison.html

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

1
Generator_Torque

1 1

Low-pass	filter

3
ModeGain

2
Generator_Speed

1
Measured_Pitch

MeasuredGeneratorSpeed

MeasuredPitch

Control_Torque_OptGain

omega_ABCD

P_StartupMode

Torque_Demanded

Pitch_Fine

T_MinTorque

GeneratorTorqueDemand

TorqueController

Torque	Controller	set	points
4

P_StartupMode

Torque	Controller	set	points1

Torque	Controller	set	points2

Torque	Controller	set	points3

(a)

1

3

2

1

4

(b)

Figure 9: The Simulink-internal Model Comparison tool struggles to match even easy
cases: here the green and blue Blocks from the original (Figure 9a) and the anonymized
model (Figure 9b) are erroneously matched.

the sanitization transformations shall alter a model’s behavior. To test whether a
model’s behavior is preserved after transformation, we treat models as black boxes
into which we feed the same inputs and observe their outputs. If a transformed model
shows a different output, given the same input, we classify it as altered behavior. We
optimistically classify all obfuscated models, that show the same output as behavior-
preserving. This is optimistic in the sense of our setup failing to try a ‘deciding’ input
that produces diverging outputs. All sanitized models that have the same output are
inspected, and classified manually, in a second step.

To record the input and output behavior, our evaluation scripts construct a wrap-
per for each model. The wrapper replaces the model inports with signal generators,
and if necessary type converters, and additionally records the values of the outgoing
signals, as shown in Figure 9. We then simulate both models of a pair and compare
their outputs.

Note that we only construct wrappers for models that are actually compilable, and
thus could demonstrate any behavior. However, we observed that often (see Table 1)
the status of compilability is changed from sanitizing it. Each compilability status
change is also counted as breaking the model’s behavioral integrity, as one of the
models can demonstrate behavior, while the other cannot.

5.2 Results: Robustness, Performance, Structural Integrity

SMOKE was able to apply all obfuscations and all sanitizations on all 8,809 models
successfully. SMOKE worked at a speed of 25.4 Blocks per second, 33.8 Signals per
second, 3.5 Subsystems per second, and 0.62 cyclomatic complexity units per second,
when all transformations shown in Figure 4 are applied. The number of Subsystems
showed the highest correlation to SMOKE execution time of +0.521, while cyclomatic
complexity had the lowest correlation of +0.140.

In all models, the structural integrity was preserved, i.e., no Blocks, Lines, Sub-
systems were ever added or removed or types of Blocks changed. We found that the
cyclomatic complexity changed in 1,954 sanitized models (never in the obfuscated
models). This, however stemmed from Simulink’s method of calculating cyclomatic
complexity: only a compilable model’s cyclomatic complexity can be calculated. The
compilability of sanitized models, however, switched in many model pairs, as we can

19

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

1

6

5

4

3

2

1

(a)

1

(b)

Figure 10: Our black box wrapping setup: all model inports in Figure 10a are replaced
by signal generators in Figure 10b. The first port of this example model is of type
boolean and a boolean converter is thus added. Similarly, all output signals are tapped
into with a To Workspace Block to record the model output.

see in Table 1. We thus ignored cyclomatic complexity for our analysis, and find
SMOKE to preserve structural integrity for all transformations, as desired.

5.3 Behavioral Integrity Results: Obfuscation

As expected, we found all models’ behavior to be preserved by SMOKE’s obfuscation
transformations.

5.4 Behavioral (Non-)Integrity Results: Sanitization

Table 1: Compilation status of models before and after sanitization.

After Sanitization
Compilation Fails Compilable

Before Sanitization
Compilation Fails 5,933 199
Compilable 1,638 1,039

In a first step of behavioral analysis, we compile all pairs of original and sanitized
models – a necessary precursor to their simulation in the next step. Table 1 gives a
result of the compilation. We can see that most original models are not compilable,
already before the sanitization, i.e., 6, 132 = 5, 933 + 199 models fail to compile from
the start. This is because many of them serve some other purpose, like library models,
and are not intended (or impossible) to be compiled, or run. We view non-compilable
models as not showing any behavior that could be altered or evaluated automatically,
and thus ignore them from the further process. The sanitization breaks the compilation

20

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

of 1,638 models, and interestingly, 199 models become compilable after sanitization.
This is due to models being in some kind of broken state (in respect to compilation),
which sometimes gets fixed by resetting Parameters with SMOKE. We view a change
in compilability in a model pair as a behavior alteration, as only one of the two
models can demonstrate any behavior, while the other cannot. Only 1,039 models are
compilable before and after transformation, and these are the models we simulated
next.

Table 2: Output status of models before and after sanitization..

After Sanitization
Crash/no output Output

Before Sanitization
Crash/no output 823 27
Output 31 158

We give the results of the simulation in Table 2. Most models produce no output,
i.e., they crash in their execution right away, or there was no output to harness in
our test setup (e.g., library models). Similar to the compilation, we see 31 models
producing no output after the sanitization, and more notably, 27 sanitized models
to start producing output. Only 158 models ran their execution crash-free for both
model versions. Of these, 16 models produced the exact same output. From our initial
set of 8,809 models, we thus automatically classified 8, 809 − 16 = 8, 793 models as
behaviorally changed, or without behavior.

The models that became compilable (199), or executable (27) via the sanitization
deserve a closer look. We observed that the sanitization removed custom (but broken)
model parts, such as configurations, or it reset data types of Parameter values, removed
faulty callbacks, etc. The other way around of sanitized models becoming broken
(for compiling 1,638, or running 31) is more obvious: after the sanitization, needed
variables, intra-model dependencies, or data types are missing, or Block Parameters
become inconsistent with each other.

Table 3: Metric comparison of SLNET models vs. their subset of behaviorally stable
models.

Blocks Block Types Signal Lines Subsystems

mean
SLNET models 133.5 10.8 177.8 18.6
stable models ⊂ SLNET 7.6 3.4 8.7 0.3

median
SLNET models 30 9 36 4
stable models ⊂ SLNET 5 3 3 0

We further inspected the last 16 stable models to determine why the sanitizing
process did not alter their behavior. Our first observation is easily recognizable from

21

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

4

3

2

11

(a)

1x

2
sfix16_En6

1
sfix16_En6

Operand1

Operand2

Result

(b)

Figure 11: Two exemplary models unaffected by sanitizing. They are too small, and
or too simple, and SMOKE did not change any behavior-affecting Parameters in each.

Table 3: the stable models are much smaller for the various size metrics than their
counterparts of the complete SLNET set. Most of their implementations are also com-
pletely flat, i.e., they are devoid of any Subsystems. This is intuitive because, on
average, smaller models exhibit less complex behavior that could be affected by our
sanitizations.

A manual inspection further showed that these models are also simple, probably
toy projects. We give two example models in Figure 11, where one can see them to be
too simple and too small for the sanitization to have any effect. We argue they show
no real functionality that needs to be sanitized, i.e., is sensitive for users, in the first
place.

In conclusion, SMOKE’s sanitization altered the behavior of most models, with
only a few small and trivial models remaining stable. As we believe models that
contain sensitive information are also complex and or big, i.e., containing user-changed
Parameters or Functions, we view SMOKE’s sanitization as effective.

5.5 Coverage

In a final step to enhance SMOKE’s capabilities, we examined the raw model files
to improve its coverage, i.e., we checked if SMOKE leaves potentially sensitive model
elements untouched. In the SLNET model files, we found 160 different Block types
and 10,731 different Parameters. These Parameters are either model-wide Parameters
or for its various elements, such as Lines, Blocks, Annotation, etc. Many of these
Parameters are for internal Simulink use, and users are not supposed to edit them.

SMOKE does not support all of these Blocks and Parameters, as many of them are
not supposed to be changed, or would need individual handling in our implementation,
which is not feasible. When designing SMOKE, we first came up with a number
of obfuscation and sanitization candidates (compare Section 4.1). After anonymizing
them, we next ran a script that finds model elements that SMOKE has thus far
left out, but could potentially hold sensitive information. These sensitive parts were
then included into transformations of SMOKE, and we started the process again. To
identify possibly sensitive parts, our script gathered all unique values in all models
for each Parameter. We manually went over this list of values and inspected the first,
or the first couple of them, to see whether they might hold valuable information.
If they did, we updated SMOKE so that they are also anonymized. Our heuristic
here was to give a closer look at the values of text or numeric type – especially if

22

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

there were more than 10 different values for a Parameter. Our argument here is that
Parameters holding few different values, or even always the same value, are less likely
to be sensitive to disclosure. We further inspected a handful of raw transformed model
files visually, to see whether any more possibly sensitive information might still be
left. Our investigation process does not guarantee that every possible sensitive part of
models will be removed by SMOKE, but it does remove all those that we found.

5.6 Threats to Validity

5.6.1 Internal Threats

The biggest threat to our internal validity is in our test setup for running the models.
Our harnessing to capture outputs (cf. Figure 10) is based on the heuristic that the
model inputs and outputs are not hidden somewhere in the model but are on the outer
layer. Additionally, some models may need inputs of certain types or values, which
our test setup did not try. However, the size of our model pool made a non-model-
specific and fast heuristic necessary. Furthermore, our test setup captured outputs for
more than a fourth of the models that were compilable (cf. Table 2), while many of
the models were never intended to be run in the first place.
Another aspect of our model output analysis in Section 5.4 is that we only measured
whether the output of a sanitized model differed in any way to the original model’s
output. We cannot sufficiently decide whether “enough” of a model or a model’s behav-
ior is altered or removed. Users have to make sure themselves whether a transformed
model satisfies their need for information protection.

Regarding the ability to reverse-engineer information or SMOKE’s coverage
(Section 5.5): we did not investigate, whether users (or Simulink) hides possibly valu-
able data in an encrypted way in the model (or raw files). During our investigation
of the raw files, we found a few parts that were not intelligible, but we suspect them
to be for internal Simulink purposes and thus ignored them. We otherwise completely
remove model elements or map Parameter values to the same value. Mathematically,
this means that reversing our transformations would require reconstructing the orig-
inal elements or Parameter values, via a reverse transformation, that would have to
‘guess’ correctly [8]. Such guessing might be helped, if enough contextual information
is still present in the model. We thus caution users of SMOKE to anonymize enough,
so that the anonymized parts, cannot be inferred from the rest of the model using
domain knowledge.

5.6.2 External Threats

Although the SLNET evaluation set is extensive and diverse, we have not yet tested
SMOKE with actual corporate models, which are its intended target. However, prior
studies have shown that a subset of models from SLNET is ‘industry-like’ [1]. While
potential industry partners may have additional requests of obfuscating or deleting
elements that SMOKE currently ignores, such features are easily integrated, as we
already demonstrated in SMOKE’s evolution (compare Sections 4.2.1 and 5.5).

23

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

6 Conclusion

With SMOKE, we provide a versatile tool that allows users to share Simulink models
while protecting their intellectual property. The tool enables selective and fine-grained
obfuscation or sanitization of models, all while preserving their structure. Our hope is
that SMOKE will enhance collaboration among researchers and industry partners by
facilitating the selective protection of models. This will enable secure sharing within
the research community and between companies.

We are currently integrating SMOKE as a filter step into a workflow of creat-
ing research data management containers [46, 47]. With SMOKE, we ensure sensitive
model parts are excluded before they become part of an immutable container. In
the future, we hope that Simulink will integrate features of SMOKE natively to
make model anonymization even more accessible. SMOKE is open-source15 and eas-
ily extendable, e.g., with additional transformations. We welcome any suggestions for
additional features the community would like to see integrated.

References

[1] Boll, A., Brokhausen, F., Amorim, T., Kehrer, T., Vogelsang, A.: Characteristics,
potentials, and limitations of open-source simulink projects for empirical research.
Software and Systems Modeling 20(6), 2111–2130 (2021)

[2] Bertram, V., Maoz, S., Ringert, J.O., Rumpe, B., Wenckstern, M.: Component
and connector views in practice: An experience report. In: 20th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MODELS, pp. 167–177. IEEE Computer Society, Austin, TX, USA (2017)

[3] Shrestha, S.L., Boll, A., Chowdhury, S.A., Kehrer, T., Csallner, C.: Evosl: A large
open-source corpus of changes in simulink models & projects. In: 2023 ACM/IEEE
26th International Conference on Model Driven Engineering Languages and
Systems (MODELS), pp. 273–284 (2023)

[4] Boll, A., Vieregg, N., Kehrer, T.: Replicability of experimental tool evaluations in
model-based software and systems engineering with matlab/simulink. Innovations
in Systems and Software Engineering, 1–16 (2022)

[5] Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., Silva Santos, L.B., Bourne, P.E., et
al.: The fair guiding principles for scientific data management and stewardship.
Scientific data 3(1), 1–9 (2016)

[6] Shrestha, S.L., Chowdhury, S.A., Csallner, C.: Slnet: a redistributable corpus
of 3rd-party simulink models. In: Proceedings of the 19th International Confer-
ence on Mining Software Repositories. MSR ’22, pp. 237–241. Association for
Computing Machinery, New York, NY, USA (2022)

15https://github.com/lanpirot/SMOKE

24

https://github.com/lanpirot/SMOKE

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

[7] Shrestha, S.L., Boll, A., Kehrer, T., Csallner, C.: Scoutsl: An open-source simulink
search engine. In: 2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), pp. 70–74 (2023)

[8] Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM systems journal 45(3), 621–645 (2006)

[9] Oliveira, S.R.M., Zaiane, O.R.: Protecting sensitive knowledge by data saniti-
zation. In: Third IEEE International Conference on Data Mining, pp. 613–616
(2003)

[10] Pantelic, V., Postma, S., Lawford, M., Jaskolka, M., Mackenzie, B., Korobkine,
A., Bender, M., Ong, J., Marks, G., Wassyng, A.: Software engineering prac-
tices and simulink: bridging the gap. International Journal on Software Tools for
Technology Transfer 20, 95–117 (2018)

[11] Jaskolka, M., Pantelic, V., Wassyng, A., Lawford, M.: A comparison of componen-
tization constructs for supporting modularity in simulink. SAE Technical Paper
(2020-01-1290) (2020)

[12] Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transfor-
mations. Technical report, Department of Computer Science, The University of
Auckland, New Zealand (1997)

[13] Tevajärvi, J.: Protecting intellectual property in multi-supplier ship powertrain
co-simulation. Master’s thesis, Aalto University, Otaniemi (December 2 2023)

[14] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference. Lecture Notes in Computer Science, vol. 2139, pp. 1–18. Springer,
Berlin/Heidelberg, Germany (2001)

[15] Chowdhury, S.A., Varghese, L.S., Mohian, S., Johnson, T.T., Csallner, C.: A
curated corpus of simulink models for model-based empirical studies. In: Bures,
T., Fitzgerald, J.S., Schmerl, B.R., Weyns, D. (eds.) Proceedings of the 4th Inter-
national Workshop on Software Engineering for Smart Cyber-Physical Systems,
ICSE 2018, Gothenburg, Sweden, May 27, 2018, pp. 45–48. ACM, New York City,
NY, USA (2018)

[16] Amorim, T., Boll, A., Bachman, F., Kehrer, T., Vogelsang, A., Pohlheim, H.:
Simulink bus usage in practice: an empirical study. Journal of Object Technology
22(2), 2–114 (2023)

[17] Stephan, M., Cordy, J.R.: Identification of simulink model antipattern instances
using model clone detection. In: Lethbridge, T., Cabot, J., Egyed, A. (eds.) 18th
ACM/IEEE International Conference on Model Driven Engineering Languages

25

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2,
2015, pp. 276–285. IEEE Computer Society, New York City, NY, USA (2015)

[18] Schlie, A., Wille, D., Schulze, S., Cleophas, L., Schaefer, I.: Detecting variability
in matlab/simulink models: An industry-inspired technique and its evaluation. In:
Cohen, M.B., Acher, M., Fuentes, L., Schall, D., Bosch, J., Capilla, R., Bagheri,
E., Xiong, Y., Troya, J., Cortés, A.R., Benavides, D. (eds.) Proceedings of the
21st International Systems and Software Product Line Conference, SPLC 2017,
Volume A, Sevilla, Spain, September 25-29, 2017, pp. 215–224. ACM, New York
City, NY, USA (2017)

[19] Reicherdt, R., Glesner, S.: Slicing MATLAB simulink models. In: Glinz, M.,
Murphy, G.C., Pezzè, M. (eds.) 34th International Conference on Software Engi-
neering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pp. 551–561. IEEE
Computer Society, New York City, NY, USA (2012)

[20] Schlie, A., Schulze, S., Schaefer, I.: Comparing multiple matlab/simulink models
using static connectivity matrix analysis. In: 2018 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, September
23-29, 2018, pp. 160–171. IEEE Computer Society, New York City, NY, USA
(2018)

[21] Mikulcak, M., Herber, P., Göthel, T., Glesner, S.: Information flow analysis
of combined simulink/stateflow models. Inf. Technol. Control. 48(2), 299–315
(2019)

[22] Sihler, F., Tichy, M., Pietron, J.: One-way model transformations in the context
of the technology-roadmapping tool iris. Journal of Object Technology 22(2),
2–114 (2023). The 19th European Conference on Modelling Foundations and
Applications (ECMFA 2023)

[23] Lobrano, G.: Making Sense of Competition Law Compliance For, A Practical
Guide for SMEs. Business Europe, Brussels, Belgium (2017)

[24] López, J.A.H., Cuadrado, J.S.: An efficient and scalable search engine for models.
Software and Systems Modeling 21(5), 1715–1737 (2022)

[25] Reza, S.M., Badreddin, O., Rahad, K.: Modelmine: a tool to facilitate mining
models from open source repositories. In: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. MODELS ’20. Association for Computing Machinery,
New York, NY, USA (2020)

[26] Munk, P., Nordmann, A.: Model-based safety assessment with sysml and compo-
nent fault trees: application and lessons learned. Software and Systems Modeling
19(4), 889–910 (2020)

26

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

[27] Boll, A., Kehrer, T., Goedicke, M.: Smoke: Simulink model obfuscator keeping
structure. In: Proceedings of the ACM/IEEE 27th International Conference on
Model Driven Engineering Languages and Systems. MODELS Companion ’24,
pp. 41–45. Association for Computing Machinery, New York, NY, USA (2024)

[28] Klee, H., Allen, R.: Simulation of Dynamic Systems with MATLAB® and
Simulink®, 3rd edn. Crc Press, Boca Raton, FL, USA (2018)

[29] Di Ruscio, D., Kolovos, D., Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.: Low-
code development and model-driven engineering: Two sides of the same coin?
Software and Systems Modeling 21(2), 437–446 (2022)

[30] Liggesmeyer, P., Trapp, M.: Trends in embedded software engineering. IEEE
Software 26(3), 19–25 (2009)

[31] Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam, R.: From verification to
implementation: A model translation tool and a pacemaker case study. In: 2012
IEEE 18th Real Time and Embedded Technology and Applications Symposium,
pp. 173–184 (2012)

[32] Sánchez, B., Zolotas, A., Rodriguez, H.H., Kolovos, D., Paige, R.: On-the-
fly translation and execution of ocl-like queries on simulink models. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pp. 205–215 (2019). IEEE

[33] Ceccato, M., Di Penta, M., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.:
A family of experiments to assess the effectiveness and efficiency of source code
obfuscation techniques. Empirical Software Engineering 19, 1040–1074 (2014)

[34] Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure
limitation of sensitive rules. In: Proc. 1999 Workshop on Knowledge and Data
Engineering Exchange (KDEX’99), pp. 45–52 (1999). IEEE

[35] Fill, H.-G.: Using obfuscating transformations for supporting the sharing and
analysis of conceptual models. In: Robra-Bissantz, S., Mattfeld, D. (eds.) Multi-
konferenz Wirtschaftsinformatik 2012 - Teilkonferenz Modellierung Betrieblicher
Informationssysteme. GITO Verlag, Braunschweig (2012)

[36] Nacer, A.A., Goettelmann, E., Youcef, S., Tari, A., Godart, C.: Obfuscating a
business process by splitting its logic with fake fragments for securing a multi-
cloud deployment. In: 2016 IEEE World Congress on Services (SERVICES), pp.
18–25 (2016). IEEE

[37] Mart́ınez, S., Gerard, S., Cabot, J.: On the need for intellectual property
protection in model-driven co-engineering processes. In: Reinhartz-Berger, I.,
Zdravkovic, J., Gulden, J., Schmidt, R. (eds.) Enterprise, Business-Process and
Information Systems Modeling, pp. 169–177. Springer

27

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

[38] Weber, T., Weber, S.: Model everything but with intellectual property protection
- the deltachain approach. In: Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems. MODELS ’24,
pp. 49–56. Association for Computing Machinery, New York, NY, USA (2024)

[39] Gupta, N., Chen, F., Tsoutsos, N.G., Maniatakos, M.: Obfuscade: Obfuscat-
ing additive manufacturing cad models against counterfeiting: Invited. DAC ’17.
Association for Computing Machinery, New York, NY, USA (2017)

[40] Zhou, M., Gao, X., Wu, J., Grundy, J., Chen, X., Chen, C., Li, L.: ModelObfus-
cator: Obfuscating model information to protect deployed ML-based systems. In:
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2023, pp. 1005–1017. Association for Computing
Machinery

[41] Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical Report 148, University of Auckland, New Zealand (1997)

[42] Boll, A., Rani, P., Schultheiß, A., Kehrer, T.: Beyond code: Is there a differ-
ence between comments in visual and textual languages? Journal of Systems and
Software 215, 112087 (2024)

[43] Bubenik, R.G.: Optimistic computation. PhD thesis, Rice University (1990)

[44] Shrestha, S.L., Chowdhury, S.A., Csallner, C.: Replicability study: Corpora for
understanding simulink models & projects. In: 2023 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp.
1–12 (2023)

[45] Selonen, P., Kettunen, M.: Metamodel-based inference of inter-model correspon-
dence. In: 11th European Conference on Software Maintenance and Reengineering
(CSMR’07), pp. 71–80 (2007). IEEE

[46] Goedicke, M., Lucke, U.: Research data management in computer science - nfdixcs
approach. In: Demmler, D., Krupka, D., Federrath, H. (eds.) 52. Jahrestagung der
Gesellschaft Für Informatik, INFORMATIK 2022, Informatik in Den Naturwis-
senschaften, 26. - 30. September 2022, Hamburg. LNI, vol. P-326, pp. 1317–1328.
Gesellschaft für Informatik, Bonn, Bonn, Germany (2022)

[47] Laban, F.A., Bernoth, J., Goedicke, M., Lucke, U., Striewe, M., Wieder,
P., Yahyapour, R.: Establishing the research data management container in
nfdixcs. In: Sure-Vetter, Y., Goble, C.A. (eds.) 1st Conference on Research Data
Infrastructure - Connecting Communities, CoRDI 2023, Karlsruhe, Germany,
September 12-14, 2023. TIB Open Publishing, New York City, NY, USA (2023)

28

	Introduction
	Background on Simulink and Obfuscation Techniques
	Simulink
	Obfuscation Techniques
	Sanitization Techniques

	Related Work
	Simulink-specific Obfuscation
	Obfuscating Other Model Types

	Approach and Tool
	Approach
	Obfuscations
	Sanitizations
	Structural Transformations
	Reversing Transformations
	SMOKEing other Modeling Languages

	Implementation and Extensibility
	Comparison of SMOKE with Prior Versions

	SMOKE in Action
	Menu and User Interaction
	Exemplary Obfuscation

	Evaluation
	Experimental Design
	Subjects and Setup
	Measuring Robustness, Performance, and Structural Integrity
	Behavioral (Non-)Integrity of Transformations

	Results: Robustness, Performance, Structural Integrity
	Behavioral Integrity Results: Obfuscation
	Behavioral (Non-)Integrity Results: Sanitization
	Coverage
	Threats to Validity
	Internal Threats
	External Threats

	Conclusion

