
Pushing the Boundaries of Patch Automation

Abstract—Patching is a fundamental software maintenance
and evolution task enabling the (semi-)automated propagation
of changes across different software versions. Established and
widely used general-purpose patchers, such as GNU-patch, work
on textual artifact representations (i.e., files) and typically rely
on line numbers and contexts (i.e., surrounding unchanged text)
to apply changes. This strategy often fails if source and target of
a patch differ: Some required changes may be rejected, others
may be applied to the wrong location; provoking cumbersome
manual effort. In this paper, we study the effectiveness of current
patchers, and propose a novel technique that pushes the bound-
aries of patch automation. First, we curate and analyze a large
dataset of more than 400,000 patch scenarios (i.e., cherry picks)
from 5,000 GitHub projects. Next, we examine the effectiveness of
established patchers on the gathered patch scenarios, observing
that patchers often fail to apply changes correctly. Third, we
develop a novel general-purpose patch technique, mpatch, that
utilizes a source-target matching to determine suitable change
locations. By comparing mpatch to existing patchers, we find
that it significantly improves recall while precision remains stable.
Thus, mpatch can minimize the burden of manually fixing failed
patches, specifically in projects with frequent patch applications.

Index Terms—patching, cherry-picking, variant synchroniza-
tion, change propagation, software maintenance, git

I. INTRODUCTION

Patching is a core software maintenance activity which
allows for propagating fine-grained software updates among
software versions automatically. Patches are applied by patch-
ing tools or patchers, such as GNU-patch which is po-
tentially the most well-known implementation of document
patching, being at the heart of many software maintenance
tasks for decades, such as contributing to the Linux ker-
nel [1]. Patches summarize changes to a file that can be
reapplied to copies of the file. These copies may reside, for
instance, on different development branches in a version con-
trol system. Contrary to merging development branches [2],
patching usually does not transfer all changes that occurred
on a branch but a desired subset of changes, which is also
known as cherry picking [3]. Therefore, patching is a crucial
activity in projects that maintain co-evolving software versions
simultaneously [4, 5, 6, 7], a common practice known as
clone-and-own [8, 9, 10, 11]. Most patchers expect a list of
changes performed on a source version as input, and apply
these changes to one or more target versions in form of a
patch. They try to identify the most suitable locations in the
target and which changes should be applied. Figure 1 presents
an example of such a patch scenario. In the beginning, a
developer changes a file committed at A1 , representing the
source version of the patch scenario, and commits the changes
in A2 . Later, the developer derives a patch from these changes,
and applies the patch to commit B1 , the target version, located
on a different branch. The patch application (i.e., the patched
target) results in commit B2 .

A1 A2

source
. . .

changed source

B1 B2 . . .

target patched target

· · ·

· · ·

patch

Fig. 1. Re-applying changes from a source on a target version via a patch.

While patching is trivial in cases where the source and target
version of the patch are identical, it becomes challenging the
more the source and target version differ [12, 13]. In such
cases, patchers often apply the changes at wrong locations or
even fail to apply them at all. For these complex patch sce-
narios, prior work found that current general-purpose patchers
provoke a particularly high rate of rejected changes for patches
of the Linux kernel [12, 13] requiring costly manual fixes.

In this work, we decrease the rejection rate of current
patchers significantly by developing a novel general-purpose
patcher, mpatch. During patching, mpatch computes a
matching first, yielding a global alignment (i.e., matching)
of the source and target file of a patching scenario. Thus, it
detects the correct location for applying a change in the target
more frequently than a local, context-based patcher.

First, we demonstrate empirically that current general-
purpose patchers perform unsatisfactory in various patch sce-
narios, including domains other than the Linux kernel. We
mine a dataset comprising 423,717 patch scenarios from
5,000 popular projects on GitHub, covering the 10 most
used project languages. We evaluate the effectiveness of
state-of-the-art patchers GNU-patch, git apply, and git
cherry-pick by measuring precision, recall, and the num-
ber of required manual fixes. Overall, the patchers exhibit high
precision but rather poor recall, provoking great manual effort.

Next, we compare the quality of mpatch with the es-
tablished patchers. Compared to all current general-purpose
patchers, mpatch significantly improves recall, increases the
amount of patches that can be applied fully automatically, and
reduces the number of patches that require manual fixes. Re-
garding the total number of required fixes, either mpatch or
git cherry-pick perform best, depending on the project
language. Lastly, mpatch and the other patchers perform
equally for precision and execution time.

To gauge the potential impact of improving general-purpose
patching, we investigate projects from our dataset that heavily
use patching. We compute the impact mpatch would have,
if the resulting projects adopted it. As a result, we find
that mpatch has the potential for substantially reducing the
manual efforts in such projects.

https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L182
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/blob/28715b584ab25dedc600cc2d5d22866865026bf7/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L170
https://github.com/apache/hadoop/commit/28715b584ab25dedc600cc2d5d22866865026bf7

2

Overall, we gain strong empirical evidence that mpatch
considerably improves existing general-purpose patchers while
sharing their applicability to a broad spectrum of patch sce-
narios in various projects. In summary, we contribute

• a dataset comprising 423,717 patch scenarios (i.e., cherry-
picks) mined from 5,000 popular projects on GitHub;

• a study of the prominence of patching in practice and the
frequency of complex patch scenarios;

• mpatch: a novel general-purpose patcher that utilizes a
source-target matching to push the boundaries of current
patch automation;

• an extensive empirical evaluation and comparison of
the effectiveness of mpatch and other general-purpose
patchers in a mutlitude of complex patch scenarios;

• an online reproduction package [14], comprising our
novel dataset, our implementation of mpatch, the ex-
perimental setup, and all results.

II. MOTIVATION

In this section, we first explain the concept of patching using
a motivational example. We then present the state-of-the-art
general-purpose patching tools and explain their approaches.

A. General-purpose Patching

General-purpose patching, from here on referred to as
‘patching’, reduces the effort of applying the same changes
to multiple versions of a file. Typically, such changes are first
performed manually on one version and should be repeated
on other versions that may benefit from integrating the same
changes, e.g., because the changes fix a crucial bug. Changes
can be automatically applied to a target version as a patch.

A patch typically is represented as a diff that documents
changes to a source version, including unchanged text that
surrounds the changes (i.e., their context) in a unified format,
aka. (asymmetric) difference [15], (directed) delta [16], or edit
script [17]. A unified diff aggregates changes with overlapping
context in a hunk that defines the location of the changes
in the source file. Figure 2 presents an example of such a
unified diff, which we adapted from the commit ba66f3b in
Apache hadoop. It comprises several changes that add new
code for a Transport Layer Security verification in the Java
file WebHdfsFileSystem.java, grouped into two hunks
(starting at lines L181 and L242). Lines to be added by the
patch are shown in green, surrounded by three context lines.

Over time, source and target of a patch may diverge – this
is the case for the source and target of our example. If a
divergence affects files to be patched, a patch created from the
diff between the source and changed source may no longer suit
the target. The changes in the two hunks of the patch shown
in Figure 2 cannot be easily applied to the target because
they need to be placed in a different location. Figure 3 shows
excerpts of the source and target file, focusing on the location
where the Line private boolean isTLSKrb; from the
first hunk should be added. This location is indicated by a
green arrow; common lines are highlighted in blue. In the
source file, the line is added below L183, while in the target
file it should be added below L171.

--- WebHdfsFileSystem.java
+++ WebHdfsFileSystem.java
@@ -181,6 +182,7 @@
[...]
private DFSOpsCountStatistics storageStatistics;
private KeyProvider testProvider;

+ private boolean isTLSKrb;

/**
* Return the protocol scheme for the FileSystem.

@@ -242,6 +244,7 @@
.newDefaultURLConnectionFactory(connectTimeout,

readTimeout, conf);
}

+ this.isTLSKrb = "HTTPS_ONLY".equals(conf.get(
DFS_HTTP_POLICY_KEY));

ugi = UserGroupInformation.getCurrentUser();
this.uri = URI.create(uri.getScheme() + "://" +

uri.getAuthority());
[...]

Fig. 2. Adapted patch that was created from commit ba66f3b of hadoop. We
omitted parts of the patch indicated by “[...]”.

TABLE I
OVERVIEW OF EVALUATED PATCHERS

Tool Name Type Input

GNU-patch [18] context-based unified diff, target
git apply [19] context-based unified diff, target
git cherry-pick [20] merge-based git repository, changed

source ID, target ID
mpatch (ours) match-based unified diff, source, target

For the second hunk of our example, we observe a similar
alteration in location and context. In general, depending on
how much the source and target files diverge from each other,
some changes cannot be applied: the location of some changes
may not be found, or it is questionable whether a change is
actually required in the target (cf. Section IV-B4 for more
details). Patchers typically reject changes if it is uncertain
whether or where to apply them, instead they may be inspected
and applied manually.

B. Current General-Purpose Patchers

Table I shows an overview of the patchers which we
consider in this paper: GNU-patch [18], git apply [19],
and git cherry-pick [20]. Naturally, this list is incom-
plete as other version control systems (VCS) (e.g., Mercurial
or Subversion), editors, and IDEs contain their own patch
utilities. Additionally, search and replace utilities, such as the
stream editor GNU sed, could be appropriated for patching.
In this work, we focus on patchers used by Git and Unix-
based operating systems, cf. Table I. Git, with its patchers
git apply and git cherry-pick, is the most popular
VCS [21], and GNU-patch has great impact in open-source
development (e.g., Linux kernel [1]).

1) GNU-patch: The first release of GNU-patch [18] was
in 1985. Despite its age, it is still actively maintained, with the
latest commit in March 2024 (as of July 2024), and remains a
core development package of many Unix-based distributions.

https://github.com/apache/hadoop/commit/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7
https://github.com/apache/hadoop
https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/commit/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7
https://github.com/apache/hadoop

3

179 private String restCsrfCustomHeader;
180 private Set<String> restCsrfMethodsToIgnore;
181
182 private DFSOpsCountStatistics statistics;
183 private KeyProvider testProvider;
184
185 /**
186 * Return the protocol for the FileSystem
187 *
188 * @return <code>webhdfs</code>

167 private Set<String> restCsrfMethodsToIgnore;
168 private static final ObjectReader READER =
169 new ObjectMapper().reader(Map.class);
170
171 private DFSOpsCountStatistics statistics;
172
173 /**
174 * Return the protocol for the FileSystem
175 * <p/>
176 *

Fig. 3. Excerpt from the source file (left) and target file (right) of our exemplary patch scenario from commit ba66f3b in Apache hadoop. Common lines are
highlighted in blue. The green arrows indicate where the change of the first hunk in Figure 2 was added in the source file and should be added in the target.

GNU-patch expects a unified diff as input, and then
applies these changes based on their line number and context.
For each hunk in a patch, GNU-patch searches the hunk’s
context, starting at the line number specified in the hunk.
Searching above and below that line number, GNU-patch
applies the changes at the first location with a matching
context. If it cannot find a suitable context in the file, it relaxes
the context by removing the outermost line of the leading
and trailing context and repeats the search. In its default
configuration, GNU-patch repeats this context relaxation at
most twice. Thus, GNU-patch allows for differences between
the source and the target of a patch, except for the most direct
neighboring context. If GNU-patch finds no suitable context,
it reports the hunk as rejected.

Following this approach, GNU-patch might apply changes
incorrectly or reject required changes if the source and tar-
get versions diverged substantially. When applying the patch
of Figure 2 to the target in Figure 3 (right), GNU-patch
rejects the first hunk containing the addition of private
boolean isTLSKrb; because the context line before is
different. In general, GNU-patch may reject changes if the
first leading or trailing context line diverges. Besides rejecting
the first hunk of our example, GNU-patch applies the change
in the second hunk to a wrong location. This error occurs
because GNU-patch applies changes to the first suitable
location, which may not be the correct one, especially in cases
with multiple context occurrences.

2) git apply: Git comprises two patch utilities, git
apply [19] and git cherry-pick [20]. The former is
git’s counterpart to GNU-patch and uses a similar, context-
based approach. In contrast to GNU-patch, however, git
apply’s default configuration is much more conservative
regarding differences between the source and target version.
The complete context of a hunk must fit and if a single hunk of
a patch is rejected, git apply rejects the entire patch. To
override this behavior, git apply provides a --reject
option. This option applies all applicable hunks and reports
rejected hunks in a manner similar to GNU-patch.

In both default or non-default mode, git apply rejects
the two hunks of our motivating example (cf. Figure 2), as
the contexts of the hunks do not exactly fit the target version.
In general, we expect that git apply will reject required
changes more frequently than GNU-patch.

3) git cherry-pick: Git’s second patch utility is git
cherry-pick [20] which can be used to transfer one or

more commits between branches without a full merge of these
branches. It is tightly integrated with git’s version control and
requires a commit history; specifically, it can only be applied
if the source and target version have a common ancestor in the
commit history. Given a list of commits (i.e., patches), git
cherry-pick re-applies the changes of these commits to
the current working tree one-by-one, creating a new commit
for each applied patch.

If source and target of a cherry pick have di-
verged, git cherry-pick may encounter conflicts. git
cherry-pick tries to merge these files using the same
merge strategy as git merge. Using git’s default config-
uration, git cherry-pick applies changes if they are
not part of a conflicting hunk (i.e., hunks whose context
diverged in source and target). For conflicting hunks, git
cherry-pick writes the conflict directly into the file by
concatenating the hunk of the source and the hunk of the
target, highlighting it with conflict markers. Such conflicts
must be resolved manually.

In our experience, git cherry-pick can reliably iden-
tify the correct location for a change in most cases by
considering the common ancestor of source of target version.
However, for diverged versions, git cherry-pick may
report merge conflicts even though the conflicting changes
could simply be applied, and each conflict requires manual
effort to resolve. For the patch of our motivating example,
git cherry-pick would report merge conflicts for both
hunks, provoking manual intervention.

III. MATCH-BASED PATCHING WITH MPATCH

We hypothesize that the shortcomings of current general-
purpose patchers for diverged versions can be mitigated by
utilizing a simple source-target matching. Current patchers
either rely on a context which only contains information
about the source version, but not the target, or on merging
changes with respect to a common ancestor version, which
may produce tedious merge conflicts. In contrast, a matching
identifies where common text is located in the source and
target versions, which makes it possible to more reliably
identify the correct locations for changes in a patch. To this
end, we developed mpatch, a new match-based patcher.

A. Overview

Figure 4 provides an overview of the three-phase process of
mpatch. Its input is the source version, its unified diff to the

https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/commit/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7
https://github.com/apache/hadoop

4

Source File

Target File

Diff

1. Match

LCS

2. Filter

change affects matched text?

3. Apply

Fig. 4. Overview of the phases of mpatch.

changed source version, and the target version. First, the Match
phase is responsible for determining a matching between the
source and the target versions. Second, the Filter phase filters
changes from the unified diff that are undesired in the target
version. Lastly, the Apply phase applies the remaining changes
to the target version according to the source-target matching.

1) Match: mpatch determines a source-target matching
(for each to-be-patched file) based on the largest common
subsequence (LCS) [22] of lines between a file and its
counterpart in the target version. We selected LCS for its
broad applicability to all kinds of textual software artifacts,
and because it represents a proven basis for popular diff tools
such as diff and for version control systems such as git.

Like other patchers, mpatch first has to determine which
files should be compared to identify the right patch targets. To
this end, mpatch considers all files that were changed in the
given diff and locates their counterpart in the target version,
similarly to GNU-patch. If a file has no counterpart, its
content is treated as unmatched. If a counterpart is found, the
source and target files are compared using LCS to match their
common content. The result of this first phase is a matching
of the files to be patched. For the source and target files of
our motivating example, LCS correctly matches the common
lines of both files as highlighted in Figure 3.

2) Filter: In this phase, mpatch filters all changes from
the unified diff that are not valid for the target version. We
chose a filter that uses the matching to decide whether a
change should be filtered or not. mpatch considers a change
as undesired if the change affects unmatched content of the
source version (e.g., changes to a function in the source
version that the target version does not have). Here, mpatch
differentiates between added and deleted lines. Added lines
cannot have a match themselves, thus, mpatch considers the
lines above and below the added line in the source version. If
the neighboring lines directly above or below have a match in
the target, the added line is kept for the patch; thereby mpatch
accounts for prepending or appending of lines to matched
content. Without this filter, mpatch would still be able to
find appropriate locations for required changes, but it would
not be able to determine whether a line that was added to the
source version should also be added to the target version. In
our motivating example, mpatch keeps the changes because
they add lines next to matched lines. Specifically, the addition
of the first hunk happens directly above several matched lines
as shown in Figure 3. In contrast, deleted lines must have a
match in the target for the filter to keep them, because they
could not be deleted otherwise. The result of the filtering phase
is a filtered patch and a list of changes that were filtered, i.e.,

rejected – similar to rejects being reported by GNU-patch.
These filtered changes may then be reviewed by a user. A
filtered patch may be empty, in this case the patcher only
reports filtered changes and quits.

3) Apply: The changes in the patch are applied to the target
version according to the source-target matching. mpatch
identifies the lines that should be deleted directly from the
matching. They must have a match in the target, otherwise they
would have been filtered out. For lines to be added, however,
there is no direct match that determines the location of the
addition. Therefore, mpatch considers the lines adjacent to
the added line in the source variant from which the patch
was created: Due to the filter phase, at least one of the
neighboring lines must have a match in the target version,
and mpatch adds the line below, above, or in between the
matched neighboring line(s).

There may be cases in which an added line has two
neighbors with a match in the source version, but these
neighbors got separated in the target version. In such cases,
mpatch adds the line next to the neighbor that has moved
the least from its location in the source version w.r.t. its line
number, preferring the preceeding neighbor in case of a tie;
this design decision is based on the intution that changes
should be applied to the most similar location. For the first
change of our motivating example, mpatch adds the line
directly below L171 in Figure 3, as this location is surrounded
by the matches of the lines where the change was originally
applied in the source.

B. Implementation

We implemented a prototype of mpatch [14] in Rust
to evaluate its performance and compare it to the other
patchers. mpatch offers a command line interface, similar
to GNU-patch: the prototype accepts diffs calculated with
diff as input. Therefore, mpatch could already be used in
most cases in which GNU-patch is applied today and could
also be integrated in a VCS such as git, cf. Table I.

IV. EVALUATION METHODOLOGY

The central goal of our paper is to determine the boundaries
of general-purpose patching in scenarios where the target of
a patch differs from the source. To this end, we now present
our study that aims to understand the effectiveness of current
patchers in such scenarios (RQ1), to which degree our new
patcher mpatch, presented in the prior section, can improve
patch automation (RQ2), as well as the potential impact of
improving patching in software maintenance (RQ3).

RQ1: How effective are existing general-purpose patch-
ers in complex patch scenarios?

Previous work on patching in the Linux kernel found that
GNU-patch may fail to patch C source code correctly, once
patches become more complex, i.e., if the location for changes
differs in the target [12]. However, it is unclear whether these
observations generalize to patch scenarios in other projects,
and whether other patchers exhibit the same limitations or
automation potential. To close this knowledge gap, we evaluate

https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169

5

the effectiveness of three well-known patchers on a broad
range of patch scenarios in public repositories.

RQ2: How effective is mpatch in comparison to exist-
ing patchers?

As a result of RQ1, we find that existing patchers frequently
fail to identify the correct location to apply a change. By
manually inspecting failing cases, we find that matching the
source and target of a patch application might solve most of the
encountered problems. Consequently, we developed mpatch
(cf. Section III), a novel general-purpose patcher that relies
on an matching. With RQ2, we measure the effectiveness of
mpatch and compare it with the other patchers.

RQ3: What is the potential impact of improving general-
purpose patching with mpatch?

To assess the significance of patching in practice and to gauge
the impact of mpatch’s potential improvement over existing
patchers, we study to which extent patching is a relevant
software maintenance activity in practice. Specifically, patch-
ing may be more prevalent in certain types of communities
or repositories (e.g., depending on the main programming
language), which then would also be more heavily burdened by
failing patches. To answer RQ3, we quantify the usage of git
cherry-pick in public repositories on GitHub. Lastly, we
compare the effectiveness of mpatch with the best current
patcher, identified in RQ1, on projects where patching has the
greatest impact.

A. Data Collection

To answer our research questions, we created a dataset
of patching scenarios, specifically cherry picks (i.e., patches
applied with git cherry-pick), mined from public repos-
itories. First, we curated a set of 5,000 public projects from
GitHub. We selected the ten most popular project languages
on GitHub in the first quarter of 2024 by means of their
number of stars. We identified the most popular languages
based on the language overview of the GitHut project [23]. The
most popular languages on GitHub were: Python, JavaScript,
Go, C++, Java, TypeScript, C, C#, PHP, and Rust. Next,
we collected 500 projects from the most popular projects
for each language using GitHub’s REST API: We filtered
projects by language and sorted them by their number of
stars in descending order, then selecting the top results. To
identify a project’s (programming) language, GitHub selects
the language of the majority of artifacts in the repository,
though some project artifacts are often written in another
language (e.g., shell scripts or Docker files).

Within our dataset, we identified cherry picks among all
commits and branches of the projects. While git provides
a dedicated git cherry command that is meant to find
cherry picks by comparing the diffs of commits, this command
does not work for cases in which the patch performed by
a cherry pick differs in the source and target – which are
exactly the cases that are interesting to us. When users perform
a cherry pick with git cherry-pick they can use an
optional feature that appends a line to the commit message
that states “(cherry picked from commit <id>)”. To identify
cherry picks, we parse the commit messages of all commits in

a repository, searching for instances of such a line. Using the
specified <id> of the commit, we can then retrieve the cherry.
In a few repositories that rewrote their git histories (using git
‘rebase’), we could not find some cherry commits and thus
could not include them into our evaluation.

By mining cherry picks using the approach outlined above,
we are confident that the identified cherry picks are indeed
cherry picks; however, we cannot determine how many cherry
picks actually were performed without the optional commit
message appendix. Thus, there is potentially a large number
of hidden cherry picks that we miss. We are not aware though
of reliable alternatives to identify such hidden cherry picks.

B. Evaluation of Patcher Effectiveness

To evaluate the effectiveness of patchers, we use the cherry
picks from our dataset as patch scenarios.

1) Considered Patchers: We consider GNU-patch, git
apply, and git cherry-pick as state-of-the-art for
general-purpose patching (cf. Section II-B). We use the default
configurations for GNU-patch, and git cherry-pick
because they are likely the most-used configurations in prac-
tice. To not discriminate against git apply in our evalua-
tion, we invoke it with the reject flag (cf. Section II-B2),
which simulates a behavior similar to GNU-patch, instead
of rejecting patches as a whole.

2) Sampling of Patch Scenarios: Due to the large size of
our dataset with more than 400,000 cherry picks (cf. Table III),
we focus our analysis on patch scenarios for which we expect
differences between patching techniques. To this end, we
classify cherry picks into the classes ‘trivial’ and ‘complex’.
Trivial cherry picks do not require adjustments when being
applied to the target version, and can be applied using a naïve
patcher that blindly applies all changes according to their
line number stated in the patch. In fact, for trivial patches,
we observed that all patchers, including mpatch, performed
perfectly in more than 99.99% of cases, with only rare
cases causing issues. Hence, a new patching technique cannot
improve the outcome for trivial patches. We hence discard
trivial patches from further analysis (76.4% of all patches),
and instead focus on the remaining 23.6% (101,196) complex
patches to answer our research questions in Section V-B.

3) Automated Application of Patchers: To assess the effec-
tiveness of a patcher, we replay each patch scenario in our
sample. As illustrated in Figure 1, a patch scenario consists of

• a patch that we extract from the diff of source A1 and
changed source A2 (i.e., the cherry),

• a target version B1 , that is the commit upon which the
git cherry-pick command was originally applied,

• and the expected patched target B2 , which corresponds
to the commit after the cherry pick, i.e., the ground truth.

To replay a patch scenario, we generate source, cherry, and
target versions of the patch scenario, and we invoke a patcher
with its command line interface. We then compare the patch
outcome to the expected patched target (see Section IV-B4).

An additional step is required for git cherry-pick.
In contrast to the other patchers, git cherry-pick does
not directly reject changes but instead reports merge conflicts

6

TABLE II
OVERVIEW OF PATCH OUTCOME CLASSIFICATION

Change
Type Applied? Location

Correct?
#Observed
Differences Patch Outcome Class

Required ✓ ✓ 0 correct TP
Required ✓ × 2 wrong location FP & FN
Required × N/A 1 missing FN

Undesired ✓ N/A 1 invalid FP
Undesired × N/A 0 filtered/rejected TN

(cf. Section II-B3) that are written directly into the file.
To appropriately compare git cherry-pick to the other
patchers, we thus had to handle its conflicts. For comparability,
we choose an approach that resembles the behavior of the
other patches as close as possible. Other patchers write their
rejected changes into a rejects file, instead of applying them.
We mimicked this behavior for git cherry-pick by
removing all git-markers and the theirs versions from a file
after git cherry-pick finished. For conflicting locations,
this left only the original content (the ours version), effectively
simulating a rejection of conflicting hunks.

4) Classification of Patch Outcomes: Table II depicts our
scheme for classifying a patch outcome. First, we compare the
patched target version with the expected patch outcome using
Unix diff, where we treat missing files as empty and ignore
trailing whitespace, as it rarely carries important information.
According to the observed differences in the patched target, we
then classify the changes in a patch as exactly one of the five
classes in Table II. The classes distinguish required changes
that must be applied by a patcher, and undesired changes that
must not be applied and hence rejected (first column). For
required changes, there are three cases that may occur (second
to last column): the change has been applied to the correct
location (correct), the change has been applied to an incorrect
location (wrong location), and the change has not been applied
(missing). For undesired changes, we also distinguish between
a change having been applied (invalid) anywhere, and a change
not having been applied (filtered/rejected).

Using this methodology, we focus only on the patch applica-
tion itself, effectively ignoring differences that are not directly
related to the content of the patch, that is differences caused
by a developer having manually performed additional changes
while cherry-picking. We ignore these differences because the
evaluated general-purpose patchers focus on applying patches,
and do not alter the target in any other way. Furthermore, we
only consider text files – excluding binary files: A small edit
in a binary file can be just as problematic as a large one, and
a diff cannot effectively represent differences in binary files.

5) Evaluation Metrics: We measure effectiveness of patch-
ers in terms of five different metrics.

a) Precision and Recall: We measure precision and
recall because they reflect whether required changes are cor-
rectly applied and undesired changes rejected. To determine
precision and recall, we consider patchers as classifiers for
changes [24, 12] that try to determine whether a change is
required or undesired, with required changes being positive
and undesired changes negative instances. Thus, for required

changes, we count correctly applied changes as true positive
(TP), and rejected changes as false negatives (FN) (cf. Ta-
ble II). For undesired changes, we count applied changes as
false positive (FP), and not-applied changes as true negative
(TN). Required changes that were applied to the wrong loca-
tion represent a special case because they cause an undesired
change (at the wrong location) and a missing change (at the
correct location); we counted them as both FP and FN, which
also reflects the additional effort of developers in such cases.

Precision is the ratio of correctly applied required changes
among all applied changes, which is given by TP

TP+FP , while
recall is the ratio of required changes that were applied
correctly, which is given by TP

TP+FN .
b) Patch Automation Percentage and Required Fixes:

These metrics reflect the manual effort of developers patching.
The automation percentage measures how often a patcher
is able to apply a patch without human intervention. We
determine the patch automation percentage as the ratio of
the number of patches with 100% precision and recall (i.e.,
no fixes needed), and the total number of patches. We also
measure the average number of fixes that are required after a
patch application by counting the number of line-sized changes
required to correct the artifact after the patcher finished.

c) Average Runtime in Seconds: Lastly, we measure the
patch runtime, ignoring setup and clean-up tasks.

V. RESULTS

A. Overview of our Dataset of Mined Cherry Picks
In Table III, we present an overview of our gathered dataset

allowing us to examine the prominence of change propagation
in public software development practice. In total, we mined
cherry-picks from 5,000 repositories (500 from each of the 10
most popular languages on GitHub). While in 4,304 projects
we cannot find cherry picks based on the commit messages,
we find a total of 423,717 cherry picks spread across 696
repositories. The column ‘cherry pick [%]‘ denotes the cherry-
pick-to-commit ratio; i.e., how many percent of the commits
are cherry picks. Next, the column ‘complex cherry pick [%]‘
indicates the percentage of sampled cherry picks that are
complex, meaning the source and target do not match perfectly.
The complex cherry picks represent the patching scenarios we
studied for RQs 1 and 2.

Language-wise, we observe notable differences, specifically
in the absolute and relative occurrence of cherry picks. The
projects implemented mainly in C and C++ encompass half
of all identified cherry picks in absolute numbers whereas
JavaScript projects use them least frequently in absolute and
relative numbers. Conversely, Java projects exhibit the highest
cherry-pick-to-commit ratio on average: more than every 50th

commit is a cherry pick. Moreover, we observe differences re-
garding the ratio of complex cherry picks among the identified
cherry picks. Projects implemented in PHP exhibit the lowest
ratio of complex cherry picks (on average: 13.2%), while C++
and Rust projects have the highest ratio with averages of 31.8%
and 31.9%, respectively. The average ratio of complex cherry
picks across all projects is 23.9%. Thus, almost every fourth
cherry pick requires target-specific adjustments (e.g., applying
changes to locations different from the source).

7

TABLE III
OVERVIEW OF OUR COLLECTION OF GITHUB PROJECTS.

main
repository
language

#sampled
projects

#projects
w. cherry

picks

#cherry
picks

cherry
pick [%]

complex
cherry

pick [%]

C 500 74 108,595 1.292 19.1
C# 500 61 6,929 0.334 22.1
C++ 500 112 108,085 1.437 31.8
Go 500 98 28,941 1.234 28.6
Java 500 91 81,859 2.232 20.6
JavaScript 500 43 3,243 0.187 22.4
PHP 500 54 22,593 0.830 13.2
Python 500 57 33,152 1.130 27.1
Rust 500 39 7,033 0.329 31.9
TypeScript 500 67 23,287 0.728 19.2

total 5,000 696 423,717 1.153 23.9

B. Evaluation of Patchers on our Dataset

To answer RQs 1 and 2, we studied the patchers intro-
duced in Section II-B and mpatch on our dataset. Table IV
presents the key results of our evaluation. For each patcher, we
measured precision, recall, automation degree, the number of
required fixes for a failed patch, and its execution time (cf. Sec-
tion IV-B5). Values highlighted in bold font perform best
for each metric and project language. The rightmost columns
present the mean (x̄) over all languages, the relative difference
of these means of the patchers compared to mpatch (±%),
and the effect size |rRB |, computed with the rank-biserial
correlation [25]. To test the null hypothesis whether the
results of mpatch or of another patcher stem from the same
distribution, we used the Wilcoxon signed-rank test [26]. In
all cases, the hypothesis got rejected with p ≪ 0.01. This
shows that mpatch behaves significantly different than the
other patchers for all metrics measured. Next, we describe the
results presented in Table IV in detail, illuminating the metrics
followed by analyzing language-specific results.
Precision: All patchers exhibit high precision (> 0.9), with
git apply showing the highest precision for every language
but C++. mpatch performs slightly worse than the remaining
tools, which perform 1.50% to 2.57% higher in precision.
Recall: GNU-patch and git cherry-pick achieve re-
calls of about 0.7 and 0.8, respectively; git apply performs
worse with a recall of about 0.65. In contrast, mpatch scores
0.92 for its lowest recall level. Thus, it outperforms the re-
maining patchers across all project languages. On average, we
observe that the second-best patcher, git cherry-pick,
has a 13.53% lower recall than mpatch.
Patch Automation Percentage: All of the current patch-
ers show a low degree of automation (git apply: 16%,
GNU-patch: 40%, and git cherry-pick: 41%). In con-
trast, mpatch can automatically apply 59% of complex
patches correctly. Thus, mpatch outperforms the remaining
patchers over all languages; git cherry-pick shows a
30% lower automation percentage in relative terms.
Required Fixes: The number of lines developers are re-
quired to fix after patching shows a high volatility. git
cherry-pick performs best with 34 fixes needed, while
mpatch requires more lines to be fixed at 82 fixes on average.

GNU-patch and git apply perform similarly with 104
and 107 fixes, respectively.
Runtime: Lastly, all patching techniques need much less than
one second per patch on average although we observed out-
liers for all techniques, sometimes taking dozens of seconds.
GNU-patch performed the fastest for all languages.

Language-wise, we observe some variance; e.g., all patchers
have lower precision and recall for C++ and C# projects.
Similarly for automation level, we observe the worst perfor-
mance across all patchers for C++ and C#. Moreover, we
find that patch scenarios in PHP projects require much fewer
fixes than scenarios in other project languages. The number
of required fixes varies largely w.r.t. the project languages and
patchers; e.g., for JavaScript, patches applied by mpatch need
ten times less fixes compared to the remaining patchers. For
C++, Java, and C, git cherry-pick performed best while
mpatch performed best in the remaining languages. In terms
of execution time, there is no outstanding behavior.

All in all, mpatch performs slightly worse in precision
than the other patchers but improves recall and the degree of
automation significantly. Although mpatch requires less fixes
than git cherry-pick for most languages, on average
git cherry-pick performs best in this category.

C. Impact of mpatch on Frequently Patched Projects.

For RQ3, we compare the performance of mpatch to the
currently best-performing patcher git cherry-pick in the
five projects with the highest number of cherry picks. Table V
presents the result of this comparison. The ratio of cherry picks
to commits (‘cherry pick [%]’) shows that the projects utilize
cherry picking very differently. Some projects mostly commit
trivial cherry picks for which we do not expect differences
between the patchers. For instance, ‘intellij-community’ fea-
tures only 859 complex cherry picks out of 12,998 cherry
picks in total. Next, the table presents the amount of re-
quired fixes on average per complex patch (columns ‘required
fixes <tool>’). We can then calculate the total number
of required manual fixes in a project; e.g., for ‘ceph’ this
would be 30.8 fixes

complex cherry pick · 7,758 complex cherry picks =
238,946 fixes for git cherry-pick and 18.0 · 7,758 =
139,644 for mpatch. The last two columns show the per-
centage of complex cherry picks without required fixes.

VI. DISCUSSION

A. Answers to Our Research Questions

1) RQ1: Effectiveness of current general-purpose patchers:
In our evaluation of current patchers, git cherry-pick
performed best. Compared to GNU-patch, it also has the
advantage that it is integrated directly into a version control
system. This saves manual effort to commit changes, espe-
cially for trivial patches that can be applied without fixes.
However, it comes at the price of git cherry-pick being
less applicable, specifically to git projects only. For instance,
it is hardly possible to create a patch and transfer it to another
project. Moreover, git cherry-pick does not outperform
GNU-patch as its merge-based strategy is susceptible to any

8

TABLE IV
COMPARISON OF THE CONSIDERED PATCHERS FOR VARIOUS PROJECT LANGUAGES.

Project Languages

Metric Patcher Python JavaS. Go C++ Java TypeS. C C# PHP Rust x ±% |rRB |

Precision

mpatch (ours) 0.94 0.92 0.96 0.91 0.95 0.95 0.94 0.91 0.90 0.95 0.94
GNU-patch 0.96 0.93 0.97 0.93 0.96 0.97 0.95 0.93 0.92 0.96 0.95 1.50% 0.19
git apply 0.97 0.98 0.98 0.94 0.98 0.98 0.96 0.96 0.92 0.97 0.96 2.57% 0.30
git cp 0.95 0.95 0.97 0.94 0.97 0.97 0.95 0.94 0.91 0.96 0.95 1.68% 0.18

Recall

mpatch (ours) 0.95 0.94 0.97 0.96 0.97 0.96 0.96 0.92 0.98 0.97 0.96
GNU-patch 0.81 0.75 0.84 0.77 0.84 0.80 0.76 0.76 0.87 0.84 0.80 −16.90% 0.70
git apply 0.70 0.59 0.75 0.63 0.70 0.71 0.55 0.62 0.77 0.74 0.66 −31.86% 0.86
git cp 0.84 0.77 0.88 0.81 0.85 0.84 0.80 0.78 0.89 0.87 0.83 −13.53% 0.66

Autom. (%)

mpatch (ours) 59.93 62.05 62.12 52.08 59.78 57.86 65.83 49.50 56.47 50.07 58.89
GNU-patch 44.19 39.16 35.50 36.59 39.79 40.51 45.08 33.74 45.77 34.75 40.26 −31.63% 0.36
git apply 24.24 14.63 13.85 17.19 11.55 20.13 13.10 15.30 26.81 16.56 16.05 −72.74% 0.76
git cp 42.10 36.46 49.27 37.38 38.36 42.15 43.87 33.81 44.64 36.17 41.08 −30.21% 0.34

Req. Fixes

mpatch (ours) 11.57 8.85 27.24 169.82 143.27 12.03 32.35 69.59 5.06 10.82 81.53
GNU-patch 37.26 91.44 54.01 199.43 160.21 35.39 43.97 136.17 15.56 37.45 104.03 27.61% 0.36
git apply 40.31 94.30 58.43 203.89 172.23 38.42 35.17 139.19 17.70 44.57 106.76 30.92% 0.55
git cp 23.54 82.57 36.23 33.80 57.72 20.93 20.75 72.35 10.19 26.77 34.12 −58.19% 0.31

Time (s)

mpatch (ours) 0.06 0.05 0.17 0.25 0.09 0.24 0.06 0.05 0.05 0.09 0.13
GNU-patch 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.05 0.03 −73.49% 0.36
git apply 0.16 0.06 0.26 0.33 0.39 0.41 0.31 0.22 0.12 0.09 0.30 127.36% 0.79
git cp 0.15 0.09 0.15 0.34 0.27 0.28 0.23 0.17 0.13 0.14 0.24 84.47% 0.76

TABLE V
COMPARISON OF AUTOMATION POTENTIAL OF MPATCH AND GIT

CHERRY-PICK IN PROJECTS WITH THE MOST CHERRY PICKS.

repository cherry
pick [%]

#cherry
picks

#complex
cherry
picks

#required
fixes

git cp

#required
fixes

mpatch

fully
autom.
git cp

fully
autom.
mpatch

IntelliJ 2.45 12,998 859 6.8 3.0 56.7% 66.0%
Hadoop 21.02 14,553 3,618 15.6 5.0 34.2% 62.0%
FreeBSD 2.31 21,266 3,316 8.3 4.3 42.3% 67.0%
FFmpeg 17.99 23,774 3,829 3.3 1.2 55.0% 76.4%
ceph 22.01 32,651 7,758 30.8 18.0 36.0% 59.3%

change in the context being reported as conflict. In our eval-
uation, we inspected several patches manually, to understand
the workflow of patchers and their strengths and weaknesses.
We observed cases in which git cherry-pick reported
extremely complex merge conflicts, even if the patch only
contained one or two changes. For example, the cherry pick
applied as commit 0539294 in the project moby changed a
single line in the target, but upon replaying, git reports a merge
conflict spanning several hundred lines. Such extreme cases
highlight the limitations of the merge-based strategy.

In general, current patchers achieve high precision but fall
short in the recall and patch automation rates. Overall, less
than 50% of the complex patches can be automatically applied
with current patchers. In terms of recall and automation,
git apply performed much worse than GNU-patch and
git cherry-pick. This is likely due to its strict rejection
heuristic: any difference in the target’s context leads to a
rejection (cf. Section II-B2). Interestingly, this behavior only
increases precision marginally. By comparing the results of
git apply and GNU-patch, we find that a partially com-
mon context is a reliable indicator that a change is required
as GNU-patch achieves a much higher recall with its more
relaxed context-based strategy.

RQ1: git cherry-pick is the most effective current
patcher, when git histories are available. While current
patchers can identify undesired changes reliably, they often
reject required changes or apply them at wrong locations. To
increase automation, new patch tools should improve recall
as this promises better overall results.

2) RQ2: Effectiveness of mpatch: Our results show that
mpatch achieves consistently better recall than current patch-
ers across all project languages. This also increases the
patch automation considerably: mpatch performs 43% better
relative to git cherry-pick, i.e., git cherry-pick
performs 30% worse than mpatch. We observe a similar
improvement for the Top-5 projects with the highest number
of patches (cf. Table V). Here, mpatch clearly outperforms
git cherry-pick with respect to the automation potential
and number of required fixes.

While the mean number of required fixes is considerably
lower for mpatch for most project languages, surprisingly,
mpatch requires considerably more fixes on average than
git cherry-pick for patches in C++ and Java projects.
We re-analyzed our results omitting outliers; i.e., the Top-0.5%
results w.r.t. the number of required fixes. The corresponding
version of Table IV is part of our reproduction package [14].
This omission had a large impact on the average fixes per
patch, while the other metrics remained roughly stable. For
mpatch, the average fixes went down from 81.53 to 5.77;
for the other patchers the impact was smaller, e.g., from 34.12
down to 9.95 for git cherry-pick. For the other metrics,
we do not observe such extreme outliers. We interpret these
extreme outliers as scenarios, where patchers without VCS
information break completely whereas git cherry-pick
can leverage additional information from the git history.

https://github.com/JetBrains/intellij-community
https://github.com/apache/hadoop
https://github.com/freebsd/freebsd-src
https://github.com/FFmpeg/FFmpeg
https://github.com/ceph/ceph
https://github.com/moby/moby/commit/053929465227ce5d123f623c116651707d217b24
https://github.com/moby/moby/

9

mpatch has almost perfect recall, but slight potential to
increase precision. The filter heuristic employed by mpatch
assumes that required changes probably affect matched text.
We plan to examine other heuristics in the future.

Overall, our prototypical implementation of mpatch out-
performs all tested patchers, including git cherry-pick,
despite biases in favor of git cherry-pick (cf. para-
graph VI-B0a). Thus, our prototype improves the state of the
art and may be used right away.

RQ2: Our evaluation presents strong empirical evidence that
mpatch outperforms current general-purpose patchers on
a wide spectrum of patch scenarios. Using mpatch, prac-
ticioners could on average apply 40% more patches without
human intervention than with the best current patcher.

3) RQ3: Potential impact of improving general-purpose
patching with mpatch: Finding that mpatch improves
patching for individual patching scenarios, we also gauge its
potential impact for developers, in general. To this end, we first
consider the prominence of patching in public repositories, and
second, the heavy reliance of some projects on patching.

While mining cherry picks from repositories, we were only
able to identify cherry picks in 696 out of 5,000, but we may
have missed patches that were applied with other tools than
git cherry-pick. As we only selected cherry picks with
dedicated, optionally-generated commit messages (cf. Sec-
tion IV-A), it is likely that we missed an unknown number
of cherry picks without this message, and patch scenarios
that were created with other patchers or manual copy-and-
pasting. Despite this limitation, we were able to identify about
423k patches, with about 101k of them being complex. This
corresponds to about 144 complex cherry picks per project
with cherry picks. Of these 101k complex patches, mpatch
is able to automatically apply about 17k more patches than the
best current patcher. For each of these patches, manual effort
is saved in addition to requiring fewer fixes in most cases.

We also investigated the potential impact of mpatch in
the Top-5 projects with the highest number of cherry picks
(cf. Table V). Here, we observe that patching is a central
aspect for three of these five projects, as more than 17%
of commits are patches. For these projects, mpatch could
lead to a substantial reduction in manual effort that is caused
by fixing patches. The most extreme case we found is in
ceph: 22% of their commits are patches. In ceph, mpatch
could have applied 1,800 more patches automatically than git
cherry-pick, while requiring only half the number of fixes.

RQ3: Our evaluation shows that mpatch could have a large
positive impact on patching in many different projects and
domains, especially projects that heavily utilize patching.

B. Threats to Validity

a) Internal Validity: As with any software, bugs in our
evaluation setup might lead to incorrect conclusions. To ensure
the correctness of mpatch, we implemented unit and integra-
tion tests that check its match, filter, and apply phase in various

patching scenarios. Whenever applicable, we also integrated
implementations of trusted libraries into our prototype, e.g.,
for the LCS matcher. We further reviewed edge cases and
anomalies to double-check our complete evaluation work flow.

In our evaluation we calculate various metrics that are
influenced by the outcomes of Unix diff; we use it to assess
the difference of the expected patch target and the achieved
patch target. Such a diff is intrinsically heuristic, i.e., there are
many different but valid diffs of two files. GNU-patch, git
apply, and our mpatch use a diff as input, and thus may be
biased by this. However, most other patchers are either also
based on Unix diff directly or a derivate of it.

All patch scenarios in our evaluation were originally per-
formed using git cherry-pick, which introduces two
strong biases in its favor. First, git cherry-pick’s patch
results are often more similar to our evaluation’s ground
truth, because it was derived from git cherry-pick:
each of our patch scenarios is the result of a developer
using git cherry-pick, and then fixing its result, i.e.,
resolving merge conflicts. In each patch scenario, a developer
thus started to resolve conflicts after they were presented
the git cherry-pick results of our evaluation. Second,
our dataset may miss cases where git cherry-pick per-
formed exceptionally poor. Such cases could be either git
cherry-pick crashing or creating too many merge conflicts
to be managable. Instead of attempting to deal with these
scenarios and commit their result, these scenarios may have
just been skipped or handled with another tool. It is thus
remarkable that mpatch still performed better than git
cherry-pick for many metrics.

We used all patchers in their default configuration in our
evaluation. Each patcher offers various fine-tuning options
for specific tasks, and using these configurations may yield
different outcomes. However, we chose to evaluate only the
most straightforward, and likely most commonly used default
configurations. We argue that this approach provides a good
impression of a patcher’s average performance.

b) External Validity: Our dataset is limited to public
projects on GitHub and our observations thus might not
be generalizable to closed-source projects. However, many
professional developers participate in projects on GitHub and
our dataset of diverse projects should cover many different pro-
gramming practices. Similarly, our results may not generalize
to smaller, less popular projects. However, a better patching
tool would have a smaller impact for these, anyway.

In our evaluation, we only consider patch scenarios that
stem from cherry picks and thus git cherry-pick. Other
patchers (e.g., classic Unix diff and GNU-patch, manual
propagation) are not reflected by our dataset and may exhibit
different properties. Currently, our knowledge of patch sce-
narios from other tools is severely limited, and we have no
way of collecting them, automatically. However, our dataset
of patches is much bigger and covers more domains than in
prior work, broadening our knowledge at least for cherry picks.

https://github.com/ceph/ceph
https://github.com/ceph/ceph

10

VII. RELATED WORK

A. Techniques Related to Patching

1) Patch Backporting: Patch backporting creates a patch
from changes applied to a newer version of software and trans-
forms this patch to fit an older version. Most backporting tech-
niques focus on backporting patches for the Linux kernel [12],
some specialize on Linux device drivers only [27, 28], while
others are applicable for code of a specific language, e.g., C
code [12, 13] or PHP [29]. Harnessing the syntax, semantics,
control flow or dependencies of their application domain, they
may even outperform GNU-patch, i.e., FixMorph [12] and
TSBPORT [13]. However, this effectiveness comes at the price
of limited applicability. We consider a direct comparison with
patch backporting out of the scope of this paper as backporting
techniques are complementary to mpatch: While mpatch
can be used for general-purpose patching, backporting may
be used for their specialized use cases.

2) Patching in Variant-Rich Systems: Prior work investi-
gated the potential to automate patching for clone-and-own
variants (i.e., diverged versions) [24]. They simulated diverg-
ing versions of the Unix suite BusyBox and observed that
GNU-patch achieved a high precision and recall of 0.92 and
0.93. While we report a similar precision for GNU-patch,
we found that its recall does not generalize to patch scenarios
in public projects, with an average recall of only 0.80.

Research on patch propagation [30], patch mutation [31],
patch filtering [32], or differencing [33] for configurable
software (i.e., software product lines) assumes the existence of
explicit documentation on (1) the available software versions
or variants, and (2) the relation of source code to configuration
options (e.g., via C preprocessor annotations). Variation con-
trol systems [34, 35, 36, 37, 38, 39], such as ECCO [40, 41]
and SuperMod [42], propagate changes to software variants but
require a single representation of all software variants similar
to software product lines. While such methods are effective
when explicit knowledge on variability is present, they are
neither applicable as general-purpose patchers nor account for
diverged versions without this explicit knowledge.

B. Studies on Patching Practices

Businge et al. [43] conducted a study on patching between
forks in Android, .NET, and JavaScript systems. They found
that the rate of patching between forks is overall low and
that most patches are applied to forks as pull requests (i.e.,
merges). They also investigated patching between two forks
and observed that git cherry-pick is seldom used (9%
of Android, 0.9% of .NET, and 2.5% of JavaScript). In
contrast, we found cherry-picks in about 14% of the projects
in our dataset. We suspect that this discrepancy is due to their
more conservative method of considering only trivial cherry-
picks. Ramkisoen et al. [44] investigated the “patch technical
lag” in divergent forks: They found that it takes 27 weeks on
average until a bug fix is propagated to a fork that requires it.
Jang et al. [45] investigated vulnerability patching over time.
They found that the majority of clones remain unpatched after
one year, and that some clones remain unpatched even longer.

All of these empirical findings suggest a need for better tool
support that helps with identifying and applying patches.

Regarding the complexity of patching, Shariffdeen et al.
[12] investigated the typical number of patches that are back-
ported and the time required to backport them. They found
that many patches are backported to Linux kernel versions
(about 8% per Linux version) and that backporting requires
more than 20 days for 80% of patches. Furthermore, when
analyzing patches they observed that only 23% of backported
patches were trivial. This suggests that patch backporting is
more complex than patching in general, as we observed that
more than 75% of patches in our dataset were trivial.

VIII. CONCLUSION

In this paper, we investigated the prominence of patching in
public repositories and the effectiveness of patchers in complex
patch scenarios. We mined a dataset of ca. 100k complex patch
scenario from 5,000 public repositories on GitHub to study the
effectiveness of current patchers. We observed that they apply
patches with high precision, but low recall as current patchers
struggle to identify the correct change locations confidently.
This causes an overall low rate of automation of only 16%
to 41% of the investigated patch scenarios. To address these
shortcomings, we introduced mpatch, a novel match-based
patching technique. mpatch achieves a higher recall and
thereby higher automation rate than the best current patcher
in the studied patch scenarios, by a margin of 30%. Lastly,
we investigated the potential impact of mpatch on patching
in practice. Out of the 100k complex patches in our dataset,
mpatch could have correctly and automatically applied 17k
patches more than the best current patcher. This directly
impacts projects that heavily rely on patching. For instance, in
ceph, we found more than 7,000 complex patches from which
mpatch could correctly apply 25% more patches and reduce
the number of necessary fixes by half for the remaining ones.

Our work shows that patching remains a challenging prob-
lem in software maintenance and evolution. Particularly, when
the source and target of a patch diverge, current patchers fall
short. While related techniques (e.g., patch backporting) are
effective in cases of diverging source and target versions, they
have stricter requirements, limiting their application to specific
use cases and file formats. In contrast, our novel general-
purpose patching technique, mpatch, can immediately boost
patch automation in most cases in which these tools are
not applicable, which reduces the burden of manual effort
associated with failing patches immediately. Consequently,
our work paves the way for more efficient maintenance and
evolution of complex software projects, for instance, by in-
tegrating mpatch into version control systems. Additionally,
our large dataset of complex patches can be used to evaluate
the effectiveness of novel patching techniques, or to study
patching practices in public repositories.

In conclusion, our design and implementation of a prototyp-
ical patcher demonstrated superior effectiveness compared to a
family of tools that have evolved and matured over almost 40
years. This underscores the importance of re-evaluating even
the most established methods and techniques in our more than
vibrant research area of software engineering.

https://github.com/ceph/ceph

11

REFERENCES

[1] J. Juhl, “Applying Patches To The Linux Kernel,”
Website: https://www.kernel.org/doc/html/v4.11/process/
applying-patches.html, 2016, accessed: 2024-07-01.

[2] T. Mens, “A State-of-the-Art Survey on Software Merg-
ing,” IEEE Trans. on Software Engineering (TSE),
vol. 28, no. 5, pp. 449–462, 2002.

[3] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick,
Version Control With Subversion. O’Reilly Media, Inc.,
2004.

[4] J. Rubin, K. Czarnecki, and M. Chechik, “Managing
Cloned Variants: A Framework and Experience,” in Proc.
Int’l Systems and Software Product Line Conf. (SPLC).
ACM, 2013, pp. 101–110.

[5] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki, “An Exploratory Study of
Cloning in Industrial Software Product Lines,” in Proc.
Europ. Conf. on Software Maintenance and Reengineer-
ing (CSMR). IEEE, 2013, pp. 25–34.

[6] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki,
T. Schmorleiz, R. Lämmel, S. Stănciulescu, A. Wą-
sowski, and I. Schaefer, “Flexible Product Line Engi-
neering With a Virtual Platform,” in Proc. Int’l Conf. on
Software Engineering (ICSE). ACM, 2014, pp. 532–535.

[7] S. Stănciulescu, S. Schulze, and A. Wąsowski, “Forked
and Integrated Variants in an Open-Source Firmware
Project,” in Proc. Int’l Conf. on Software Maintenance
and Evolution (ICSME). IEEE, 2015, pp. 151–160.

[8] W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki,
“Maintaining Feature Traceability With Embedded An-
notations,” in Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 2015, pp. 61–70.

[9] H. Abukwaik, A. Burger, B. K. Andam, and T. Berger,
“Semi-Automated Feature Traceability With Embedded
Annotations,” in Proc. Int’l Conf. on Software Mainte-
nance and Evolution (ICSME). IEEE, 2018, pp. 529–
533.

[10] P. M. Bittner, A. Schultheiß, T. Thüm, T. Kehrer, J. M.
Young, and L. Linsbauer, “Feature Trace Recording,” in
Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). ACM, 2021, pp.
1007–1020.

[11] T. Kehrer, T. Thüm, A. Schultheiß, and P. M. Bittner,
“Bridging the Gap Between Clone-and-Own and Soft-
ware Product Lines,” in Proc. Int’l Conf. on Software
Engineering (ICSE). IEEE, 2021, pp. 21–25.

[12] R. Shariffdeen, X. Gao, G. J. Duck, S. H. Tan, J. Lawall,
and A. Roychoudhury, “Automated Patch Backporting in
Linux (Experience Paper),” in Proc. Int’l Symposium on
Software Testing and Analysis (ISSTA). ACM, 2021, pp.
633–645.

[13] S. Yang, Y. Xiao, Z. Xu, C. Sun, C. Ji, and Y. Zhang,
“Enhancing OSS Patch Backporting with Semantics,” in
Proc. SIGSAC Conf. on Computer and Communications
Security (CCS). ACM, 2023, pp. 2366–2380.

[14] A. Authors, “The reproduction package of this paper,”
Website: https://anonymous.4open.science/r/patching-

with-matching-eval-36B3/README.md, Aug. 2024.
[15] T. Kehrer, U. Kelter, and G. Taentzer, “Consistency-

Preserving Edit Scripts in Model Versioning,” in Proc.
Int’l Conf. on Automated Software Engineering (ASE).
ACM, 2013, pp. 191–201.

[16] R. Conradi and B. Westfechtel, “Version Models for
Software Configuration Management,” ACM Computing
Surveys (CSUR), vol. 30, no. 2, pp. 232–282, 1998.

[17] T. Kehrer, U. Kelter, P. Pietsch, and M. Schmidt, “Adapt-
ability of Model Comparison Tools,” in Proc. Int’l Conf.
on Automated Software Engineering (ASE). ACM, 2012,
pp. 306–309.

[18] L. Wall, P. Eggert, W. Davison, D. MacKenzie,
and A. Grünbacher, “GNU patch,” Website: https://
savannah.gnu.org/projects/patch/, 2009, accessed: 2024-
07-01.

[19] L. Torvalds, J. C. Hamano et al., “git-apply,” Web-
site: https://git-scm.com/docs/git-apply, 2023, accessed:
2024-07-01.

[20] ——, “git-cherry-pick,” Website: https://git-scm.com/
docs/git-cherry-pick, 2023, accessed: 2024-07-01.

[21] S. E. Inc., “Beyond Git: The other version
control systems developers use,” Website:
https://stackoverflow.blog/2023/01/09/beyond-git-the-
other-version-control-systems-developers-use/, 2023,
accessed: 2024-07-01.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. The MIT Press,
2001.

[23] F. Beuke, “Githut 2.0 – a small place to discover lan-
guages in github,” Website: https://madnight.github.io/
githut/#/stars/2024/1, 2024, accessed: 2024-06-01.

[24] A. Schultheiß, P. M. Bittner, T. Thüm, and T. Kehrer,
“Quantifying the Potential to Automate the Synchro-
nization of Variants in Clone-and-Own,” in Proc. Int’l
Conf. on Software Maintenance and Evolution (ICSME).
IEEE, 2022, pp. 269–280.

[25] E. E. Cureton, “Rank-Biserial Correlation,” Psychome-
trika, vol. 21, no. 3, pp. 287–290, 1956.

[26] F. Wilcoxon, “Individual comparisons by ranking meth-
ods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[27] L. R. Rodriguez and J. Lawall, “Increasing Automation
in the Backporting of Linux Drivers Using Coccinelle,”
in Proc. Europ. Dependable Computing Conf. (EDCC).
IEEE, 2015, pp. 132–143.

[28] F. Thung, X. D. Le, D. Lo, and J. Lawall, “Recom-
mending Code Changes for Automatic Backporting of
Linux Device Drivers,” in Proc. Int’l Conf. on Software
Maintenance and Evolution (ICSME). IEEE, 2016, pp.
222–232.

[29] Y. Shi, Y. Zhang, T. Luo, X. Mao, Y. Cao, Z. Wang,
Y. Zhao, Z. Huang, and M. Yang, “Backporting Security
Patches of Web Applications: A Prototype Design and
Implementation on Injection Vulnerability Patches,” in
Proc. USENIX Security Symposium (USS). USENIX
Association, 2022, pp. 1993–2010.

[30] G. K. Michelon, W. K. G. Assunção, P. Grünbacher,
and A. Egyed, “Analysis and Propagation of Feature Re-

https://www.kernel.org/doc/html/v4.11/process/applying-patches.html
https://www.kernel.org/doc/html/v4.11/process/applying-patches.html
https://anonymous.4open.science/r/patching-with-matching-eval-36B3/README.md
https://anonymous.4open.science/r/patching-with-matching-eval-36B3/README.md
https://savannah.gnu.org/projects/patch/
https://savannah.gnu.org/projects/patch/
https://git-scm.com/docs/git-apply
https://git-scm.com/docs/git-cherry-pick
https://git-scm.com/docs/git-cherry-pick
https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://madnight.github.io/githut/#/stars/2024/1
https://madnight.github.io/githut/#/stars/2024/1

12

visions in Preprocessor-based Software Product Lines,”
in Proc. Int’l Conf. on Software Analysis, Evolution
and Reengineering (SANER), T. Zhang, X. Xia, and
N. Novielli, Eds. IEEE, 2023, pp. 284–295.

[31] P. M. Bittner, A. Schultheiß, S. Greiner, B. Moosherr,
S. Krieter, C. Tinnes, T. Kehrer, and T. Thüm, “Views
on Edits to Variational Software,” in Proc. Int’l Systems
and Software Product Line Conf. (SPLC). ACM, 2023,
pp. 141–152.

[32] T. Landsberg, C. Dietrich, and D. Lohmann, “Should
I Bother? Fast Patch Filtering for Statically-Configured
Software Variants,” in Proc. Int’l Systems and Software
Product Line Conf. (SPLC). ACM, Sep. 2024, to appear.

[33] P. M. Bittner, A. Schultheiß, B. Moosherr, T. Kehrer, and
T. Thüm, “Variability-Aware Differencing with DiffDe-
tective,” in Companion Proc. Int’l Conference on the
Foundations of Software Engineering (FSE Companion).
ACM, 2024, pp. 632–636.

[34] L. Linsbauer, T. Berger, and P. Grünbacher, “A Classifi-
cation of Variation Control Systems,” in Proc. Int’l Conf.
on Generative Programming: Concepts & Experiences
(GPCE). ACM, 2017, pp. 49–62.

[35] L. Linsbauer, F. Schwägerl, T. Berger, and P. Grünbacher,
“Concepts of Variation Control Systems,” J. Systems and
Software (JSS), vol. 171, p. 110796, 2021.

[36] S. Ananieva, S. Greiner, T. Kehrer, J. Krüger, T. Kühn,
L. Linsbauer, S. Grüner, A. Koziolek, H. Lönn,
S. Ramesh, and R. H. Reussner, “A Conceptual Model
for Unifying Variability in Space and Time: Rationale,
Validation, and Illustrative Applications,” Empirical Soft-
ware Engineering (EMSE), vol. 27, no. 5, p. 101, 2022.

[37] S. Ananieva, T. Kühn, and R. Reussner, “Preserving
Consistency of Interrelated Models During View-Based
Evolution of Variable Systems,” in Proc. Int’l Conf. on
Generative Programming and Component Engineering
(GPCE). ACM, 2022, pp. 148–163.

[38] S. Stănciulescu, T. Berger, E. Walkingshaw, and A. Wą-
sowski, “Concepts, Operations, and Feasibility of a
Projection-Based Variation Control System,” in Proc.
Int’l Conf. on Software Maintenance and Evolution (IC-
SME). IEEE, 2016, pp. 323–333.

[39] E. Walkingshaw and K. Ostermann, “Projectional Editing
of Variational Software,” in Proc. Int’l Conf. on Gener-
ative Programming: Concepts & Experiences (GPCE).
ACM, 2014, pp. 29–38.

[40] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed, “The ECCO Tool: Extraction and Composition
for Clone-and-Own,” in Proc. Int’l Conf. on Software
Engineering (ICSE). IEEE, 2015, pp. 665–668.

[41] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Vari-
ability Extraction and Modeling for Product Variants,”
Software and Systems Modeling (SoSyM), vol. 16, no. 4,
pp. 1179–1199, 2017.

[42] F. Schwägerl and B. Westfechtel, “SuperMod: Tool Sup-
port for Collaborative Filtered Model-Driven Software
Product Line Engineering,” in Proc. Int’l Conf. on Au-
tomated Software Engineering (ASE). ACM, 2016, pp.
822–827.

[43] J. Businge, M. Openja, S. Nadi, and T. Berger, “Reuse
and Maintenance Practices Among Divergent Forks in
Three Software Ecosystems,” Empirical Software Engi-
neering (EMSE), vol. 27, no. 2, p. 54, 2022.

[44] P. K. Ramkisoen, J. Businge, B. van Bladel, A. Decan,
S. Demeyer, C. D. Roover, and F. Khomh, “PaReco:
Patched Clones and Missed Patches Among the Diver-
gent Variants of a Software Family,” in Proc. Europ.
Software Engineering Conf./Foundations of Software En-
gineering (ESEC/FSE). ACM, 2022, pp. 646–658.

[45] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Find-
ing Unpatched Code Clones in Entire OS Distributions,”
in Proc. IEEE Symposium on Security and Privacy (SP).
IEEE, 2012, pp. 48–62.

	Introduction
	Motivation
	General-purpose Patching
	Current General-Purpose Patchers
	GNU-patch
	git apply
	git cherry-pick

	Match-based patching with mpatch
	Overview
	Match
	Filter
	Apply

	Implementation

	Evaluation Methodology
	Data Collection
	Evaluation of Patcher Effectiveness
	Considered Patchers
	Sampling of Patch Scenarios
	Automated Application of Patchers
	Classification of Patch Outcomes
	Evaluation Metrics

	Results
	Overview of our Dataset of Mined Cherry Picks
	Evaluation of Patchers on our Dataset
	Impact of mpatch on Frequently Patched Projects.

	Discussion
	Answers to Our Research Questions
	RQ1: Effectiveness of current general-purpose patchers
	RQ2: Effectiveness of mpatch
	RQ3: Potential impact of improving general-purpose patching with mpatch

	Threats to Validity

	Related Work
	Techniques Related to Patching
	Patch Backporting
	Patching in Variant-Rich Systems

	Studies on Patching Practices

	Conclusion
	TODOS and Backlog

