
IDCC25 | Conference Paper

The 19th International Digital Curation Conference takes place on 17-19 February 2025 in The Hague,

Netherlands

URL: https://www.dcc.ac.uk/events/idcc25

Copyright rests with the authors. This work is released under a Creative Commons

Attribution License, version 4.0. For details please see

https://creativecommons.org/licenses/by/4.0/ .

 1

A Multi-Modal Community Quest for Open Data and
Reproducibility in Software Engineering

Abstract
Various research disciplines face their unique challenges in handling research
data and making their research reproducible. In this talk, we present open data
and reproducibility challenges, like trade secrets, copyright, and paywalls in the
domain of software engineering, specifically its modeling subcommunity and the
community’s initiatives to overcome them.

Introduction

Research data is not at all monotonous. Across various disciplines of science, research

data offers various peculiarities, challenges, and opportunities. One well-known challenge,

for instance, is the proper anonymization of sensitive personal data in medical research;

for archival purposes, but also to write about in a published article (van Ooijen, 2019). Our

research discipline, software engineering research, offers several challenges that we view

as quite rare and in their combination even unique and thus interesting to discuss. In fact,

some of our challenges like trade secrets or copyright are described as “rabbit holes” for

software and data curation with hurdles that should be avoided, for general solutions (Rios,

p. 239, 2018). Nevertheless, our research discipline exists and is facing these challenges.

Our community is thus incentivized to tackle these hurdles, and our talk will give an

overview of our challenges and our efforts to overcome them.

Software engineering (Mall, 2018) is a discipline that aims to improve the process of

creating software. As such, in software engineering research, often, the research data that

is investigated is software (hereafter referred to as “programs”). In addition, the research

software that analyzes programs is often highly specialized or unique (Rios et al., 2020).

This means, that a reproduction package1 of an article in software engineering usually

contains the research software, the programs/data to be analyzed and documentation on

how to reproduce the findings, cf. Figure 1.

However, in our specific subdomain of Simulink research, we encounter additional

challenges that complicate conducting research or the creation and sharing of such

reproduction packages. These challenges arise particularly due to the sensitivity of the

data, licensing, and the legal constraints around sharing. Below, we outline the key

challenges and problems (CPs) that we face in this context.

1 Supplementary materials needed to reproduce a study’s findings.

https://creativecommons.org/licenses/by/4.0/

2

IDCC25 | Conference Paper

Figure 1 Standard elements of a software engineering reproduction package. We extend an

adapted Figure from Rios (Rios, p. 241, 2018).

(CP1) The most interesting research data are “real-world” programs, that are owned by

companies. The companies consider their programs to be sensitive intellectual

property and usually do not share their programs with researchers or do so only

under heavy restrictions. Consequently, researchers are left without necessary

research subjects and cannot start their research project or are, e.g., not allowed to

publish their data.

(CP2) Additionally, many alternative public programs, e.g., on the sharing website

GitHub, are hard to locate or were created without a copyright license or a

restrictive one. Such programs qualify as research subjects but publishing them in

parts or as a whole is illegal.

(CP3) Simulink, the environment to execute the research software or programs, is

proprietary, i.e., not freely available. For reproduction, i.e., when programs need

to be executed, an expensive paywall needs to be overcome.

(CP4) Programs are data. While studying their static behavior they behave like normal

data. However, when investigated dynamically (e.g., to study program correctness

or execution time), the program is run and exhibits behavior that might be unsafe2

in addition to other complex behavior.

(CP5) The (research) software is often highly specialized, or even unique. It thus needs

to be included in the reproduction package and be properly documented – better

yet the reproduction package workflow should be automated.

Our subcommunity particular focuses on (CP1), (CP2), (CP3), while the wider

computer science community addresses (CP4), (CP5) (Barr et al., 2023; Goedicke &

Lucke, 2022). The wider computer science community focuses less on open data (CP1),

(CP2), and necessary software for reproduction (CP3) as they are more commonly

accessible and free-to-use, for them.

Overall, the efforts, described in our talk help researchers to discover, acquire, freely

study, publish, and archive programs or adequate alternatives as research subjects (CP1),

(CP2), and to bypass reproduction paywalls (CP3). This reduces the necessary upfront

investment for researchers or is the necessary precondition that makes research and its

reproducibility possible in the first place.

Background: Simulink and Simulink Research

Simulink is a graphical programming language, often used for programs in engineering

contexts, e.g., to control complex hardware in domains such as automotive (Palli et al.,

2022), quadcopters (Yasar & Karakose, 2022), and energy (Badi et al., 2021). An

2 Unchecked programs might crash the execution environment (computer) or may be outright malware,

like computer viruses.

Software
Programs/Data

Documentation

https://github.com/

 3

IDCC25 | Conference Paper

Figure 2: Adaption of a Simulink program of self-driving cars.

exemplary Simulink program is shown in Figure 2. Simulink programs consist of signal

lines, that connect blocks. Signal lines transport values from block outputs to block inputs,

while blocks compute an output from their input values. This enables complex, dynamic

behavior.

In the Simulink integrated development environment, a developer can view the

graphical representation of the program, simulate its behavior, and can translate it into a

traditional, textual programming language and then deploy it, e.g., onto a chip of a car.

Research around Simulink focuses on the following three directions (Ds). We list their

associated challenges and problems in brackets.

D1. Develop new Simulink programs to solve an engineering task (Norouzi et al.,

2017). (CP3), (CP5)

D2. Develop a new software tool that helps Simulink developers and validate it on

Simulink programs, e.g., a program checker (Nejati et al., 2019). (CP1), (CP2),

(CP3), (CP5)

D3. Study Simulink programs themselves: statically, dynamically or the program

evolution (Shrestha et al., 2023). (CP1), (CP2), (CP3), (CP4), (CP5)

A Reproduction Crisis in the Community

The first step in tackling any problem is recognizing that it exists. Many Simulink

researchers commented parenthetically on problems of acquiring the necessary programs

for their research (CP1) or to publish them (CP1), (CP2) (Bertram et al., 2017; Chowdhury,

2018; Chowdhury et al., 2018; Hussain et al., 2019; Jiang et al., 2017; Rao et al., 2017;

Tomita et al., 2019) – be it for the evaluation of their tool (D2) or for studying the programs

themselves (D3). The full extent of this problem was only revealed in a systematic

literature study (Boll et al., 2022). This study found a reproducibility crisis in empirical

Simulink research: only 22% of the programs used as experimental subjects in Simulink

studies were accessible in the reproduction package. Equally alarming was the fact, that

only 31% of the software tools that were developed in these studies were shared.

Combining these findings, only 9% of the studies provided both programs and tools, which

is a necessary precondition for reproducibility, cf. Figure 1. Due to missing documentation

https://www.mathworks.com/matlabcentral/fileexchange/70265-automated-driving-scenario-simulation-reference-example

4

IDCC25 | Conference Paper

or a too cumbersome experimentation workflow, none of the investigated Simulink studies

could be reproduced, fully.

Community Initiatives for Open Data & Reproducibility

When our community realized the extent of the reproduction crisis described in the prior

section, we saw the necessity to act and developed multiple initiatives to mitigate (CP1),

(CP2), (CP3):

(CP1) Companies don’t share their programs to protect intellectual property

(Boll et al., 2024) developed an obfuscator that anonymizes programs, selectively

removing form or function of them, while keeping the program structure intact. Companies

can now share anonymized programs, with valuable intellectual property removed. An

anonymized version of the program of Figure 2 is depicted in Figure 3. We view this as a

surprising parallel to anonymization of, e.g., personalized data. In both cases, parts of the

data are removed, while keeping other parts intact that still have value.

Note: most initiatives mitigating (CP2) are also helping with (CP1).

Figure 3 The program from Figure 2 after anonymization. Names and colors are removed, all

positions of blocks are scrambled, while the overall structure is preserved. There are also additional

invisible changes removing functionality.

(CP2) Public programs are hard to locate and often without permissive license

The community started to curate larger and larger corpora of open-source programs from

various public sources (Chowdhury, 2018; Chowdhury et al., 2018; Shrestha et al., 2022;

Shrestha et al., 2023). These corpora were found to contain many Simulink programs that

are adequate for empirical research (Boll et al., 2021). They thus offer a viable alternative,

for many research methods, that would otherwise require confidential (non-shared)

programs.

To facilitate the discovery of adequate programs within these corpora, ScoutSL, a

search engine was established, to find programs based on general and Simulink-specific

user criteria (Shrestha et al., 2023).

Additionally, several program mutators exist now, that can amplify useful research

subjects by creating close variants of it (Bourbouh et al., 2020; Ceylan et al., 2023).

Using the curated corpora as a learning basis, programs can also be synthesized

automatically (Chowdhury et al., 2018; Shrestha & Csallner, 2021). Currently, these

artificial programs are quite small, though. However, since the advent of Large Language

http://scoutsl.net/

 5

IDCC25 | Conference Paper

Models, new AI assistants are trained on public corpora for semi-automatic program

synthesis (Adhikari, 2021; Adhikari et al., 2024; Tinnes et al., 2024).

(CP3) The execution environment, Simulink, is behind an expensive paywall

There are two initiatives, here: 1. Translate Simulink programs into another programming

language with a free execution environment, where Simulink is not needed, anymore

(Meenakshi et al., 2006; Minopoli & Frehse, 2016; Sanchez et al., 2019). 2. The vendor

of Simulink, MathWorks, started an offer that provides basic access to Simulink for free.3

Some reproduction packages are executable, using this offer.

Success of initiatives

While there is some evidence of an obfuscator being used for publication (Jaskolka et al.,

2020; Pantelic et al., 2018) (CP1), overall, evidence for the utilization of initiatives against

(CP1) and (CP3) are rare.

Researchers often clearly state the origin of their research data for empirical

evaluation, though. Apart from the usage of corpora for the above-mentioned synthesizers

and mutators, we found many articles that used one of the curated corpora for their

empirical study (Amorim et al., 2023; Boll et al., 2024; Schultheiß et al., 2023; Shrestha

et al. 2023; Su et al., 2024). Furthermore, ScoutSL, the search engine for Simulink

programs is visited by 50 people, daily, discovering adequate research subjects (CP2).

Please note, that the initiatives are just mitigatory and do not solve all challenges, yet.

Especially (CP1) remains a hard challenge, still.

Conclusion

Our talk presented several interesting challenges for open data and reproducibility of our

field. These challenges are mitigated by various initiatives from within our community.

While these initiatives are not solving the challenges completely, our community is now

in a much better position for a more open and reproducible research.

Our talk’s discussion will focus on possible parallels of the presented techniques to

other research areas. Those research disciplines facing similar challenges may also

anonymize or mutate existing data, curate open alternatives, or synthesize adequate

substitutes. On the other hand, we also seek feedback on what opportunities our

community can learn from other communities and their ideas.

Acknowledgements

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under project number NFDI 52/1 501930651.

We used ChatGPT for better phrasing and to correct grammar mistakes.

3 Certain restrictions apply for free users, such as time and storage space contingents.

https://www.mathworks.com/products/matlab-online/matlab-online-versions.html
https://chatgpt.com/

6

IDCC25 | Conference Paper

Bibliography

Adhikari, B. (2021). Intelligent Simulink Modeling Assistance via Model Clones and

Machine Learning [Masters Thesis]. Miami University.

Adhikari, B., Rapos, E. J., & Stephan, M. (2024). SimIMA: a virtual Simulink intelligent

modeling assistant: Simulink intelligent modeling assistance through machine

learning and model clones. Software and Systems Modeling, 23(1).

https://doi.org/10.1007/s10270-023-01093-6

Amorim, T., Boll, A., Bachman, F., Kehrer, T., Vogelsang, A., & Pohlheim, H. (2023).

Simulink bus usage in practice: an empirical study. Journal of Object Technology,

22(2). https://doi.org/10.5381/jot.2023.22.2.a12

Barr, E., Timperley, C., Bell, J., Hilton, M., & Mechtaev, S. (2023). Continuously

Accelerating Research. Proceedings - International Conference on Software

Engineering. https://doi.org/10.1109/ICSE-NIER58687.2023.00028

Bertram, V., Maoz, S., Ringert, J. O., Rumpe, B., & Von Wenckstern, M. (2017).

Component and Connector Views in Practice: An Experience Report. Proceedings -

ACM/IEEE 20th International Conference on Model Driven Engineering

Languages and Systems, MODELS 2017.

https://doi.org/10.1109/MODELS.2017.29

Boll, A., Brokhausen, F., Amorim, T., Kehrer, T., & Vogelsang, A. (2021).

Characteristics, potentials, and limitations of open-source Simulink projects for

empirical research. Software and Systems Modeling, 20(6).

https://doi.org/10.1007/s10270-021-00883-0

Boll, A., Kehrer, T., & Goedicke, M. (2024). SMOKE: Simulink Model Obfuscator

Keeping Structure. MODELS (Accepted).

Boll, A., Rani, P., Schultheiß, A., & Kehrer, T. (2024). Beyond code: Is there a

difference between comments in visual and textual languages? Journal of Systems

and Software, 215, 112087. https://doi.org/10.1016/j.jss.2024.112087

Boll, A., Vieregg, N., & Kehrer, T. (2022). Replicability of experimental tool

evaluations in model-based software and systems engineering with

MATLAB/Simulink. Innovations in Systems and Software Engineering.

https://doi.org/10.1007/s11334-022-00442-w

Chowdhury, S. A. (2018). Understanding and improving cyber-physical system models

and development tools. Proceedings - International Conference on Software

Engineering. https://doi.org/10.1145/3183440.3183455

Chowdhury, S. A., Mohian, S., Mehra, S., Gawsane, S., Johnson, T. T., & Csallner, C.

(2018). Automatically finding bugs in a commercial cyber-physical system

development tool chain with SLforge. Proceedings - International Conference on

Software Engineering. https://doi.org/10.1145/3180155.3180231

Chowdhury, S. A., Varghese, L. S., Mohian, S., Johnson, T. T., & Csallner, C. (2018). A

curated corpus of simulink models for model-based empirical studies. Proceedings -

International Conference on Software Engineering.

https://doi.org/10.1145/3196478.3196484

Goedicke, M., & Lucke, U. (2022). Research Data Management in Computer Science -

the NFDIxCS Approach. Lecture Notes in Informatics (LNI), Proceedings - Series

of the Gesellschaft Fur Informatik (GI), P-326.

https://doi.org/10.18420/inf2022_112

Hussain, A., Sher, H. A., Murtaza, A. F., & Al-Haddad, K. (2019). Improved restricted

control set model predictive control (iRCS-MPC) based maximum power point

 7

IDCC25 | Conference Paper

tracking of photovoltaic module. IEEE Access, 7.

https://doi.org/10.1109/ACCESS.2019.2946747

Jaskolka, M., Pantelic, V., Wassyng, A., & Lawford, M. (2020). Supporting Modularity

in Simulink Models.

Jiang, Z., Wu, X., Dong, Z., & Mu, M. (2017). Optimal Test Case Generation for

Simulink Models Using Slicing. Proceedings - 2017 IEEE International

Conference on Software Quality, Reliability and Security Companion, QRS-C 2017.

https://doi.org/10.1109/QRS-C.2017.67

Mall, R. (2018). Fundamentals of Software Engineering, Fifth Edition. In Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics).

Meenakshi, B., Bhatnagar, A., & Roy, S. (2006). Tool for translating simulink models

into input language of a model checker. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 4260 LNCS. https://doi.org/10.1007/11901433_33

Minopoli, S., & Frehse, G. (2016). SL2SX translator: From simulink to SpaceEx models.

HSCC 2016 - Proceedings of the 19th International Conference on Hybrid Systems:

Computation and Control. https://doi.org/10.1145/28838172883826

Nejati, S., Gaaloul, K., Menghi, C., Briand, L. C., Foster, S., & Wolfe, D. (2019).

Evaluating model testing and model checking for finding requirements violations in

Simulink models. ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint

Meeting European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. https://doi.org/10.1145/3338906.3340444

Norouzi, P., Kivanç, Ö. C., & Üstün, Ö. (2017). High performance position control of

double sided air core linear brushless DC motor. 2017 10th International

Conference on Electrical and Electronics Engineering, ELECO 2017, 2018-

January.

Pantelic, V., Postma, S., Lawford, M., Jaskolka, M., Mackenzie, B., Korobkine, A.,

Bender, M., Ong, J., Marks, G., & Wassyng, A. (2018). Software engineering

practices and Simulink: bridging the gap. International Journal on Software Tools

for Technology Transfer, 20(1). https://doi.org/10.1007/s10009-017-0450-9

Rao, A. C., Raouf, A., Dhadyalla, G., & Pasupuleti, V. (2017). Mutation testing based

evaluation of formal verification tools. Proceedings - 4th International Conference

on Dependable Systems and Their Applications, DSA 2017, 2018-January.

https://doi.org/10.1109/DSA.2017.10

Rios, F. (2018). Incorporating Software Curation into Research Data Management

Services: Lessons Learned. International Journal of Digital Curation, 13(1).

https://doi.org/10.2218/ijdc.v13i1.608

Rios, F., Lassere, M., Ruggill, J. E., & McAllister, K. S. (2020). Sustaining Software

Preservation Efforts Through Use and Communities of Practice. International

Journal of Digital Curation, 15(1). https://doi.org/10.2218/ijdc.v15i1.696

Sanchez, B. A., Zolotas, A., Hoyos Rodriguez, H., Kolovos, D. S., & Paige, R. F. (2019).

On-the-Fly Translation and Execution of OCL-Like Queries on Simulink Models.

Proceedings - 2019 ACM/IEEE 22nd International Conference on Model Driven

Engineering Languages and Systems, MODELS 2019.

https://doi.org/10.1109/MODELS.2019.000-1

8

IDCC25 | Conference Paper

Schultheiß, A., Bittner, P. M., Boll, A., Grunske, L., Thüm, T., & Kehrer, T. (2023).

RaQuN: a generic and scalable n-way model matching algorithm. Software and

Systems Modeling, 22(5). https://doi.org/10.1007/s10270-022-01062-5

Shrestha, S. L., Boll, A., Chowdhury, S. A., Kehrer, T., & Csallner, C. (2023). EvoSL: A

Large Open-Source Corpus of Changes in Simulink Models & Projects.

Proceedings - ACM/IEEE 26th International Conference on Model Driven

Engineering Languages and Systems, MODELS 2023.

https://doi.org/10.1109/MODELS58315.2023.00024

Shrestha, S. L., Boll, A., Kehrer, T., & Csallner, C. (2023). ScoutSL: An Open-Source

Simulink Search Engine. Proceedings - 2023 ACM/IEEE International Conference

on Model Driven Engineering Languages and Systems Companion, MODELS-C

2023. https://doi.org/10.1109/MODELS-C59198.2023.00022

Shrestha, S. L., Chowdhury, S. A., & Csallner, C. (2022). SLNET: A Redistributable

Corpus of 3rd-party Simulink Models. Proceedings - 2022 Mining Software

Repositories Conference, MSR 2022. https://doi.org/10.1145/3524842.3528001

Shrestha, S. L., Chowdhury, S. A., & Csallner, C. (2023). Replicability Study: Corpora

For Understanding Simulink Models & Projects. International Symposium on

Empirical Software Engineering and Measurement.

https://doi.org/10.1109/ESEM56168.2023.10304867

Shrestha, S. L., & Csallner, C. (2021). SLGPT: Using transfer learning to directly

generate simulink model files and find bugs in the simulink toolchain. ACM

International Conference Proceeding Series.

https://doi.org/10.1145/3463274.3463806

Su, Z., Yu, Z., Wang, D., Yang, Y., Wang, R., Chang, W., Cui, A., & Jiang, Y. (2024).

HSTCG: State-Aware Simulink Model Test Case Generation with Heuristic

Strategy. IEEE Transactions on Software Engineering, 1–17.

https://doi.org/10.1109/TSE.2024.3428528

Tinnes, C., Welter, A., & Apel, S. (2024). Leveraging Large Language Models for

Software Model Completion: Results from Industrial and Public Datasets.

Tomita, T., Ishii, D., Murakami, T., Takeuchi, S., & Aoki, T. (2019). A scalable Monte-

Carlo test-case generation tool for large and complex simulink models. Proceedings

- 2019 IEEE/ACM 11th International Workshop on Modelling in Software

Engineering, MiSE 2019. https://doi.org/10.1109/MiSE.2019.00014

van Ooijen, P. M. A. (2019). Quality and curation of medical images and data. In

Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks.

https://doi.org/10.1007/978-3-319-94878-2_17

