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A Multi-Modal Community Quest for Open Data and 
Reproducibility in Software Engineering 

Abstract 
Various research disciplines face their unique challenges in handling research 
data and making their research reproducible. In this talk, we present open data 
and reproducibility challenges, like trade secrets, copyright, and paywalls in the 
domain of software engineering, specifically its modeling subcommunity and the 
community’s initiatives to overcome them.  

Introduction 

Research data is not at all monotonous. Across various disciplines of science, research 

data offers various peculiarities, challenges, and opportunities. One well-known challenge, 

for instance, is the proper anonymization of sensitive personal data in medical research; 

for archival purposes, but also to write about in a published article (van Ooijen, 2019). Our 

research discipline, software engineering research, offers several challenges that we view 

as quite rare and in their combination even unique and thus interesting to discuss. In fact, 

some of our challenges like trade secrets or copyright are described as “rabbit holes” for 

software and data curation with hurdles that should be avoided, for general solutions (Rios, 

p. 239, 2018). Nevertheless, our research discipline exists and is facing these challenges. 

Our community is thus incentivized to tackle these hurdles, and our talk will give an 

overview of our challenges and our efforts to overcome them. 

Software engineering (Mall, 2018) is a discipline that aims to improve the process of 

creating software. As such, in software engineering research, often, the research data that 

is investigated is software (hereafter referred to as “programs”). In addition, the research 

software that analyzes programs is often highly specialized or unique (Rios et al., 2020). 

This means, that a reproduction package1 of an article in software engineering usually 

contains the research software, the programs/data to be analyzed and documentation on 

how to reproduce the findings, cf. Figure 1. 

However, in our specific subdomain of Simulink research, we encounter additional 

challenges that complicate conducting research or the creation and sharing of such 

reproduction packages. These challenges arise particularly due to the sensitivity of the 

data, licensing, and the legal constraints around sharing. Below, we outline the key 

challenges and problems (CPs) that we face in this context. 

 
1 Supplementary materials needed to reproduce a study’s findings. 

https://creativecommons.org/licenses/by/4.0/
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Figure 1 Standard elements of a software engineering reproduction package. We extend an 

adapted Figure from Rios (Rios, p. 241, 2018). 

 

(CP1) The most interesting research data are “real-world” programs, that are owned by 

companies. The companies consider their programs to be sensitive intellectual 

property and usually do not share their programs with researchers or do so only 

under heavy restrictions. Consequently, researchers are left without necessary 

research subjects and cannot start their research project or are, e.g., not allowed to 

publish their data. 

(CP2) Additionally, many alternative public programs, e.g., on the sharing website 

GitHub, are hard to locate or were created without a copyright license or a 

restrictive one. Such programs qualify as research subjects but publishing them in 

parts or as a whole is illegal. 

(CP3) Simulink, the environment to execute the research software or programs, is 

proprietary, i.e., not freely available. For reproduction, i.e., when programs need 

to be executed, an expensive paywall needs to be overcome. 

(CP4) Programs are data. While studying their static behavior they behave like normal 

data. However, when investigated dynamically (e.g., to study program correctness 

or execution time), the program is run and exhibits behavior that might be unsafe2 

in addition to other complex behavior. 

(CP5) The (research) software is often highly specialized, or even unique. It thus needs 

to be included in the reproduction package and be properly documented – better 

yet the reproduction package workflow should be automated. 

Our subcommunity particular focuses on (CP1), (CP2), (CP3), while the wider 

computer science community addresses (CP4), (CP5) (Barr et al., 2023; Goedicke & 

Lucke, 2022). The wider computer science community focuses less on open data (CP1), 

(CP2), and necessary software for reproduction (CP3) as they are more commonly 

accessible and free-to-use, for them. 

Overall, the efforts, described in our talk help researchers to discover, acquire, freely 

study, publish, and archive programs or adequate alternatives as research subjects (CP1), 

(CP2), and to bypass reproduction paywalls (CP3). This reduces the necessary upfront 

investment for researchers or is the necessary precondition that makes research and its 

reproducibility possible in the first place. 

Background: Simulink and Simulink Research 

Simulink is a graphical programming language, often used for programs in engineering 

contexts, e.g., to control complex hardware in domains such as automotive (Palli et al., 

2022), quadcopters (Yasar & Karakose, 2022), and energy (Badi et al., 2021). An 

 
2 Unchecked programs might crash the execution environment (computer) or may be outright malware, 

like computer viruses. 
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https://github.com/
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Figure 2: Adaption of a Simulink program of self-driving cars. 

exemplary Simulink program is shown in Figure 2. Simulink programs consist of signal 

lines, that connect blocks. Signal lines transport values from block outputs to block inputs, 

while blocks compute an output from their input values. This enables complex, dynamic 

behavior. 

In the Simulink integrated development environment, a developer can view the 

graphical representation of the program, simulate its behavior, and can translate it into a 

traditional, textual programming language and then deploy it, e.g., onto a chip of a car. 

Research around Simulink focuses on the following three directions (Ds). We list their 

associated challenges and problems in brackets. 

D1. Develop new Simulink programs to solve an engineering task (Norouzi et al., 

2017). (CP3), (CP5) 

D2. Develop a new software tool that helps Simulink developers and validate it on 

Simulink programs, e.g., a program checker (Nejati et al., 2019). (CP1), (CP2), 

(CP3), (CP5) 

D3. Study Simulink programs themselves: statically, dynamically or the program 

evolution (Shrestha et al., 2023). (CP1), (CP2), (CP3), (CP4), (CP5) 

 

 

 
 

A Reproduction Crisis in the Community 

The first step in tackling any problem is recognizing that it exists. Many Simulink 

researchers commented parenthetically on problems of acquiring the necessary programs 

for their research (CP1) or to publish them (CP1), (CP2) (Bertram et al., 2017; Chowdhury, 

2018; Chowdhury et al., 2018; Hussain et al., 2019; Jiang et al., 2017; Rao et al., 2017; 

Tomita et al., 2019) – be it for the evaluation of their tool (D2) or for studying the programs 

themselves (D3). The full extent of this problem was only revealed in a systematic 

literature study (Boll et al., 2022). This study found a reproducibility crisis in empirical 

Simulink research: only 22% of the programs used as experimental subjects in Simulink 

studies were accessible in the reproduction package. Equally alarming was the fact, that 

only 31% of the software tools that were developed in these studies were shared. 

Combining these findings, only 9% of the studies provided both programs and tools, which 

is a necessary precondition for reproducibility, cf. Figure 1. Due to missing documentation 

https://www.mathworks.com/matlabcentral/fileexchange/70265-automated-driving-scenario-simulation-reference-example
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or a too cumbersome experimentation workflow, none of the investigated Simulink studies 

could be reproduced, fully. 

Community Initiatives for Open Data & Reproducibility 

When our community realized the extent of the reproduction crisis described in the prior 

section, we saw the necessity to act and developed multiple initiatives to mitigate (CP1), 

(CP2), (CP3): 

(CP1) Companies don’t share their programs to protect intellectual property 

(Boll et al., 2024) developed an obfuscator that anonymizes programs, selectively 

removing form or function of them, while keeping the program structure intact. Companies 

can now share anonymized programs, with valuable intellectual property removed. An 

anonymized version of the program of Figure 2 is depicted in Figure 3. We view this as a 

surprising parallel to anonymization of, e.g., personalized data. In both cases, parts of the 

data are removed, while keeping other parts intact that still have value. 

Note: most initiatives mitigating (CP2) are also helping with (CP1). 

 

Figure 3 The program from Figure 2 after anonymization. Names and colors are removed, all 

positions of blocks are scrambled, while the overall structure is preserved. There are also additional 

invisible changes removing functionality. 

(CP2) Public programs are hard to locate and often without permissive license 

The community started to curate larger and larger corpora of open-source programs from 

various public sources (Chowdhury, 2018; Chowdhury et al., 2018; Shrestha et al., 2022; 

Shrestha et al., 2023). These corpora were found to contain many Simulink programs that 

are adequate for empirical research (Boll et al., 2021). They thus offer a viable alternative, 

for many research methods, that would otherwise require confidential (non-shared) 

programs. 

To facilitate the discovery of adequate programs within these corpora, ScoutSL, a 

search engine was established, to find programs based on general and Simulink-specific 

user criteria (Shrestha et al., 2023). 

Additionally, several program mutators exist now, that can amplify useful research 

subjects by creating close variants of it (Bourbouh et al., 2020; Ceylan et al., 2023). 

Using the curated corpora as a learning basis, programs can also be synthesized 

automatically (Chowdhury et al., 2018; Shrestha & Csallner, 2021). Currently, these 

artificial programs are quite small, though. However, since the advent of Large Language 

http://scoutsl.net/
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Models, new AI assistants are trained on public corpora for semi-automatic program 

synthesis (Adhikari, 2021; Adhikari et al., 2024; Tinnes et al., 2024). 

(CP3) The execution environment, Simulink, is behind an expensive paywall 

There are two initiatives, here: 1. Translate Simulink programs into another programming 

language with a free execution environment, where Simulink is not needed, anymore 

(Meenakshi et al., 2006; Minopoli & Frehse, 2016; Sanchez et al., 2019).  2. The vendor 

of Simulink, MathWorks, started an offer that provides basic access to Simulink for free.3 

Some reproduction packages are executable, using this offer. 

Success of initiatives 

While there is some evidence of an obfuscator being used for publication (Jaskolka et al., 

2020; Pantelic et al., 2018) (CP1), overall, evidence for the utilization of initiatives against 

(CP1) and (CP3) are rare. 

Researchers often clearly state the origin of their research data for empirical 

evaluation, though. Apart from the usage of corpora for the above-mentioned synthesizers 

and mutators, we found many articles that used one of the curated corpora for their 

empirical study (Amorim et al., 2023; Boll et al., 2024; Schultheiß et al., 2023; Shrestha 

et al. 2023; Su et al., 2024). Furthermore, ScoutSL, the search engine for Simulink 

programs is visited by 50 people, daily, discovering adequate research subjects (CP2). 

Please note, that the initiatives are just mitigatory and do not solve all challenges, yet. 

Especially (CP1) remains a hard challenge, still. 

Conclusion 

Our talk presented several interesting challenges for open data and reproducibility of our 

field. These challenges are mitigated by various initiatives from within our community. 

While these initiatives are not solving the challenges completely, our community is now 

in a much better position for a more open and reproducible research. 

Our talk’s discussion will focus on possible parallels of the presented techniques to 

other research areas. Those research disciplines facing similar challenges may also 

anonymize or mutate existing data, curate open alternatives, or synthesize adequate 

substitutes. On the other hand, we also seek feedback on what opportunities our 

community can learn from other communities and their ideas. 
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https://www.mathworks.com/products/matlab-online/matlab-online-versions.html
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