
Explaining GitHub Actions Failures with Large
Language Models: Challenges, Insights, and

Limitations
Pablo Valenzuela-Toledo1,2*, Chuyue Wu1*, Sandro Hernández1*, Alexander Boll1

Roman Machacek1, Sebastiano Panichella1, Timo Kehrer1

1Software Engineering Group, University of Bern, Bern, Switzerland
2Universidad de La Frontera, Temuco, Chile

Abstract—GitHub Actions (GA) has become the de facto
tool that developers use to automate software workflows,
seamlessly building, testing, and deploying code. Yet when
GA fails, it disrupts development, causing delays and
driving up costs. Diagnosing failures becomes especially
challenging because error logs are often long, complex
and unstructured. Given these difficulties, this study ex-
plores the potential of large language models (LLMs) to
generate correct, clear, concise, and actionable contextual
descriptions (or summaries) for GA failures, focusing on
developers’ perceptions of their feasibility and usefulness.
Our results show that over 80% of developers rated
LLM explanations positively in terms of correctness for
simpler/small logs. Overall, our findings suggest that LLMs
can feasibly assist developers in understanding common
GA errors, thus, potentially reducing manual analysis.
However, we also found that improved reasoning abilities
are needed to support more complex CI/CD scenarios.
For instance, less experienced developers tend to be more
positive on the described context, while seasoned developers
prefer concise summaries. Our work offers key insights
for researchers enhancing LLM reasoning, particularly in
adapting explanations to user expertise.

Index Terms—CI/CD, GitHub Actions, Large Language
Models, GitHub Action Run Failure Explanation

I. INTRODUCTION

GitHub Actions (GA) is an orchestration platform
within GitHub that enables developers to automate tasks
such as building, testing, and deploying code in inte-
gration and deployment (CI/CD) environments [1]. By
minimizing manual intervention, GA streamlines devel-
opment processes, boosts productivity, and is essential
for maintaining efficient and stable workflows in mod-
ern software teams. Technically, GA workflows operate
within specific environments, aka. “run/runners”, which
can be hosted on GitHub or on self-hosted servers [2]
[3].

Diagnosing issues in GA workflow execution involves
examining workflow execution logs [4], which capture
critical data—such as timestamps, success or failure

* These authors contributed equally to the paper.

indicators, error messages, and stack traces—that help
identify unexpected behaviors and trace failures to their
underlying causes. Additionally, environment configura-
tions and system states provide context that supports
accurate diagnosis. In today’s competitive environment,
where speed and reliability are essential, quickly ad-
dressing and resolving workflow run failures is essential
to limit deployment delays, increased operational costs,
and compromised software stability [5]–[8].

However, diagnosing GA run failures presents signifi-
cant challenges due to the volume, lack of structure, and
complexity of the logs [2], [9]. Critical error information
is often buried within extensive entries, complicating the
diagnostic process, while the absence of a standardized
log structure and inconsistent formats hinder automation
of log analysis [2]. The complexity is further exacerbated
by cryptic error codes, system-specific terminology, and
interwoven events that obscure failure sequences, re-
quiring specialized knowledge for accurate interpreta-
tion [10]. Analyzing these detailed logs to uncover root
causes necessitates a comprehensive understanding of
both the logs and the system. This situation compli-
cates pinpointing the source of failures and the actual
underlying problems [11], [12]. Consequently, efficient
filtering mechanisms are needed to isolate relevant data
and facilitate the diagnosis of failures, reducing labor-
intensive and error-prone tasks.

Diagnosing GA run failures demands specialized
knowledge that goes beyond standard troubleshooting
methods such as searching on Google or Stack Over-
flow. For example, developers in the bids-standard/bids-
validator repository encountered the error message, “Er-
ror: failed to load the Docker image ’bids/validator’:
No such file or directory”. Resolving this error required
them to analyze extensive metadata and understand
both Docker configurations and the architecture of the
bids-validator tool.1 Similarly, developers working in

1https://bit.ly/4fCDOGt

https://bit.ly/4fCDOGt


the shirasagi/shirasagi repository processed over 20,000
lines of logs, which recorded every variable, status, and
error.2 These examples demonstrate how verbose GA
logs often demand domain-specific expertise to interpret
their context, forcing developers to tackle challenges that
standard troubleshooting tools cannot address.

Recent advancements in software engineering show
that large language models (LLMs) perform tasks such
as code generation, summarization, understanding, and
review effectively [13]–[16]. We propose that developers
can use LLMs to generate explanations (or summaries)
that help diagnose run failures in GA workflows. LLMs
recognize patterns and relationships within unstructured
data, making them a promising tool for providing ac-
tionable insights to address run failures. These insights
enable developers to understand and fix issues more
efficiently. To our knowledge, no previous study has
explored how LLMs can support the understanding of
GA workflow failures.

We conducted a mixed-methods feasibility study to
evaluate how LLMs explain run failures and to under-
stand developers’ perceptions of their effectiveness. We
invited 811 developers to participate, and 31 accepted
the invitation. This study examines four key aspects of
developer perception—correctness, conciseness, clarity,
and actionability—based on theoretical constructs from
the literature [17], [18]. We chose these metrics because
researchers have widely used them in studies on sum-
mary generation and human-based assessment, making
them both relevant and well-validated.

Our feasibility study shows that LLMs can diagnose
GA workflow failures effectively, especially in straight-
forward cases. Over 80% of developers rated LLM-
generated explanations as correct and clear for smaller or
simpler error logs. These explanations captured essential
details and provided developers with insights that helped
them diagnose issues in less complex scenarios. How-
ever, LLMs struggled with intricate failures and failed
to deliver the depth of reasoning required for complex
CI/CD cases. Junior developers praised the contextual
descriptions from LLMs, while experienced developers
preferred concise explanations.

The implications of our findings are relevant primarily
to developers and researchers. For developers, integrating
LLMs into GA run failure diagnoses could improve trou-
bleshooting efficiency for simpler errors by reducing the
need for manual log analysis. This improvement could
result in faster resolution times and greater productivity
for development teams. For researchers, these findings
point to new avenues for exploration, particularly in
enhancing the reasoning capabilities of LLMs to address
complex diagnostic tasks more effectively.

2https://bit.ly/4fH4pSR

The contributions of our paper are as follows:
• We conducted a feasibility study demonstrating

LLMs’ potential for interpreting GA run failures.
• We evaluated prompt engineering techniques and

identified one-shot prompt tuning as the most effec-
tive approach for generating consistent and accurate
GA run failure explanations.

• We provided developer insights, offering initial
feedback on developers’ satisfaction with LLM-
generated explanations and identifying the most
valued attributes of these explanations.

• We established a foundation for future research,
setting the groundwork for studies on the appli-
cation of LLMs in software debugging and fault
localization, and encouraging further exploration
and innovation in this area.

• We make available a replication package with (i)
materials and datasets from our study, (ii) complete
survey results, (iii) appendix with complete analy-
sis, and (iv) raw data to facilitate replication and
support future research [19].

II. STUDY DESIGN

The goal of this study is to evaluate the feasibility of
using LLMs to explain failures in GA runs. Specifically,
this evaluation examines how attributes such as correct-
ness, conciseness, clarity, and actionability in LLM-
generated explanations contribute to their diagnostic
usefulness. Table I provides definitions for each attribute,
adapted from established constructs in prior work [17],
[18]. We outline three research questions that guide our
study, as follows:

RQ1: To what extent do LLMs correctly describe
the context of GitHub Action run failures according to
developers? We investigate the developers’ perceptions
of the correctness of LLM-generated explanations in
conveying the context of GA run failures. Here, correct-
ness indicates that the explanation is technically sound
and aligns with the system and its failure’s behavior.

RQ2: To what extent do developers find generated ex-
planations of LLMs for GitHub Action run failures clear
and concise? We examine the clarity and conciseness
of LLM-generated explanations from the developers’
perspective. Clarity refers to how understandable the
explanations are, allowing developers to identify the
issue quickly, while conciseness assesses whether the
explanations contain only essential information, avoiding
superfluous details. These two qualities play a significant
role in determining the accessibility of the explanations,
as they influence how effectively developers can interpret
and utilize them for diagnosing the failures and trou-
bleshooting activities.

RQ3: To what extent are the descriptions of GitHub
Action run failures generated by LLMs considered ac-

https://bit.ly/4fH4pSR
https://doi.org/10.5281/zenodo.14750197


TABLE I
ATTRIBUTES USED FOR EVALUATING LLM-GENERATED

EXPLANATIONS OF GITHUB ACTIONS RUN FAILURES [17], [18].

Attribute Definition

Correctness

Measures the accuracy and reliability of the
LLM-generated explanations in describing the
actual behavior of the system, ensuring infor-
mation is free from misleading content and
inspires confidence in the diagnosis provided.

Conciseness

Reflects whether the explanation is efficient
and avoids unnecessary information, present-
ing only essential details to understand and
resolve the issue effectively.

Clarity

Assesses whether the explanation is presented
in a clear and understandable manner, enabling
developers to readily grasp the issue and the
suggested steps.

Actionability

Assesses whether the explanation provides
clear, step-by-step guidance that is directly im-
plementable, enabling developers to efficiently
address and resolve the failure without needing
further clarification or external resources.

tionable by developers? We examine the actionability of
LLM-generated explanations from the developers’ per-
spective, assessing whether these explanations provide
specific and relevant information which developers can
implement into a resolution for their run failures.

A. Data Collection

We surveyed developers to investigate their percep-
tions on the feasibility and effectiveness of using LLMs
to interpret and explain GA run failures.

Survey Design.
The survey consisted of 10 closed-ended statements

and 2 open-ended questions as ordered in Fig. 1. State-
ments (1), (3), (4), (5), (6) assessed correctness (RQ1).
Statements (2), (7), (8), (9), (10) focused on conciseness
and clarity (RQ2). Each of these closed-ended statement
used a Likert scale from 1 (strongly disagree) to 5
(strongly agree), selected based on validated assessment
criteria from relevant studies in the field [20]–[26].
Finally, open-ended (OE) questions 11 and 12 addressed
actionability (RQ3).

We conducted a pilot study with experienced and
novice developers to validate the survey’s items, lay-
out, and duration. Their feedback clarified the survey,
confirmed a 45-60 minute completion time, and ensured
clear platform guidance. The study balanced the survey’s
length with its completion time by combining structured,
closed-ended questions for consistency and open-ended
ones for qualitative insights.

Survey Management & Setting. We developed and
deployed LogExp, a custom web tool, to effectively
administer the survey and evaluate LLM-generated ex-
planations (see Fig. 2). This tool allowed for side-by-side

Survey Statements & Questions
(1) The explanation accurately reflects the details

and context of the GitHub Actions run failure.
(2) The run failure explanation is helpful.
(3) There is a low likelihood of a misleading expla-

nation.
(4) The explanation accurately diagnoses the run

failure.
(5) The explanation contains no inappropriate or

incorrect content.
(6) There is evident sound diagnostic reasoning.
(7) The explanation clearly and understandably com-

municates the run failure.
(8) The explanation clearly outlines the subsequent

steps to take.
(9) The explanation specifically addresses my needs

without being too general.
(10) I am confident in the diagnosis provided by the

run failure explanation.
⋆(11) What attributes make an error explanation valu-

able and effective for addressing issues related to
GitHub Actions runs?

⋆(12) Do you have any additional comments or sug-
gestions on how we can enhance our run failure
explanations?

Fig. 1. Survey definition: Statements 1 through 10 are closed-ended,
while questions 11 and 12 are open-ended (indicated with a star ⋆).

display of both the logs (left) and their corresponding,
statically deployed explanations (right), enabling partici-
pants to easily compare and assess them within a unified
interface. In sum, the LogExp tool was populated with
the logs and explanations of ten GA failure cases, the
selection of which will be described in the sequel.

Log Selection Procedure. Our study focused on GA
workflow run failures in JavaScript software systems,
as JavaScript ranked as the most popular programming
language on GitHub in 2022 [27]. Using Dabic et al.’s
tool [28], we identified non-forked JavaScript reposi-
tories with at least one commit between March and
May 2024 to ensure compliance with GitHub’s 90-day
log access limitation [29]. We selected repositories with
workflows and prioritized active, large-scale projects. To
refine the dataset, we applied inclusion criteria of at least
20 contributors, 100 stars, and 20 recent commits, and
we removed extreme outliers. We downloaded all failure
logs and filtered out logs with fewer than 45 words.
A pilot study using the knee method [30] empirically
determined this threshold and ensured the logs provided
enough context for actionable explanations. Logs ex-
ceeding this threshold proved more meaningful, leaving
us with 348 logs. From these, we selected ten examples



Fig. 2. Partial view of the LogExp tool’s interface. The log is displayed on the left, allowing participants to choose between viewing
a summary or the full log. On the right, the corresponding textual explanation generated by the LLM is presented. Below these sections,
participants encountered statements and questions specific to each case.

for our survey, which represented diverse failure cases
from GA workflows, including continuous integration,
deployment, and testing.

LLMs configuration. In our pilot study, we tested
combinations of LLMs and prompt techniques to in-
tegrate them into LogExp. We compared three mod-
els: Llama3 (70B), Llama2 (70B), and Mixtral
(8x7B). We chose Llama3 and Llama2 because they
generated contextually accurate and structured explana-
tions that processed CI/CD logs effectively [31]. We
included Mixtral for its strong performance in few-
shot prompting, which reduced the need for fine-tuning
and handled varied error contexts [32]. We used a
predefined template from the replication package [32]
to generate explanations. We selected LLMs for their
customizability and availability, ensuring they met our
research needs. We excluded proprietary models such as
GPT because their limited fine-tuning capabilities made
them unsuitable for our exploratory research. Finally, we
prioritized models that delivered high-quality explana-
tions while reducing processing costs and complexity to
ensure accessibility for widespread use [33], [34].

In the pilot study, we tested three prompting
techniques—zero-shot, one-shot, and few-shot—on 348
GitHub Actions failure logs to evaluate their effective-
ness. Prior research shows that these techniques help
language models adapt to tasks with few or no examples
[32], [35]. Five developers rated the explanations on
correctness, conciseness, clarity, and actionability, and
their feedback improved our prompts and models. Their
evaluations identified limitations and refined our prompt-
ing techniques for each model. The pilot study showed
that Llama3 produced the most relevant and contex-

tually accurate explanations, with one-shot prompting
providing the best balance of simplicity and accuracy.

Participants Sampling Strategy. We used purposive
sampling to select contributors familiar with GA [36],
[37]. This method focused on developers most likely to
provide relevant insights. We targeted developers who
actively created, maintained, and troubleshot GA run
failures. We identified these developers through their
recent contributions to selected JavaScript projects on
GitHub, which served as sources for our GA failure
cases. To recruit participants, we contacted develop-
ers who had recently contributed to these projects.
Our recruitment strategy prioritized contributors from
projects with high activity to ensure their engagement
in workflow development and maintenance and selected
developers with experience handling and troubleshooting
GA run failures.

Demographics. We distributed the survey to 811 de-
velopers and received 31 responses, achieving a response
rate of 3.82%. Although lower than the typical range
for software engineering surveys (6% to 36%) [38], this
response rate aligns with exploratory studies, where 30
to 50 responses often provide sufficient insights. Most
participants completed the survey in the expected time,
with a median of 45 minutes. We analyzed only surveys
with at least 70% completion and retained missing data
points as blanks to reduce bias.

Most respondents were male (90%), and 10% female.
Over half (52%) had more than 11 years of experience in
software development, while 16% had 6-10 years, 13%
had around 2 years, 10% had 3-5 years, 6% had 1 year
or less, and 3% reported no professional experience. In
terms of education, 39% of participants held a Mas-



ter’s degree in Computer Science, 6% had a Master’s
in Science, Technology, Engineering, and Mathematics
(STEM), and 6% had a Master’s in non-STEM fields.
Bachelor’s degrees were also common, with 23% in
Computer Science or Software Engineering and 16% in
other STEM fields. A smaller portion of respondents held
a high school diploma (3%), some college or a 2-year
degree (3%), or a PhD or other advanced degrees (3%).

Ethics Considerations. This study complies with the
research ethics principles/regulations imposed by our
university: Informed consent was obtained from all par-
ticipants, and safeguards were implemented to minimize
the risk of re-identification at a later time.

B. Data Analysis

To analyze the data, we employed a combination
of quantitative and qualitative techniques, integrating
responses from closed-ended statements with insights
from open-ended questions allowing for detailed, free-
form responses. Our mixed-methods approach aligns
with practices in prior studies (e.g., [20]–[26]) and
was chosen to capture both the measurable trends and
the nuanced perspectives of developers regarding LLM-
generated explanations.

Quantitative Analysis. Following best practices for
survey data analysis as outlined by Kitchenham and
Pfleeger [39], and Ralph et al. [40], we performed a
quantitative analysis for both RQ1 and RQ2, computing
descriptive statistics (mean, median, agreement). This
methodological approach quantifies developers’ percep-
tions of different aspects of LLM-generated explana-
tions, offering a structured view of how these explana-
tions are received.

Qualitative Analysis. To address RQ3, we analyzed
open-ended responses from survey questions 11 and 12
using card-sorting based on Zimmermann’s three-phase
methodology [41]. In the preparation phase, we entered
responses into an Excel sheet and split each one into
cards, ensuring each card captured a single, relevant idea.
During the execution phase, three authors grouped the
cards independently by thematic similarity and resolved
ambiguities through discussions to ensure consistency.
In the analysis phase, we combined related groups into
broader categories and identified key attributes that make
LLM-generated explanations actionable for resolving
GA run failures. We measured inter-rater agreement with
Cohen’s Kappa (0.74), which showed moderate to good
agreement.

III. CORRECTNESS (RQ1)

To address RQ1, we examined developer responses
to statements (1), (3), (4), (5), and (6), each of which
evaluated different aspects of the correctness of LLM-
generated explanations for GA run failures.

50% 32.6% 11.6%

45.5% 32.7% 10.6%

48% 30.4% 16.3%

56% 27.5% 9.7%

54% 33.1%St. 6

St. 5

St. 4

St. 3

St. 1

0255075100

Fully Agree Agree Neutral Disagree Strongly Disagree

Fig. 3. The stacked bar chart shows the levels of agreement of
participants to our statements (1), (3), (4), (5), and (6).

Overall, developers responded positively to these
statements on correctness (see Fig. 3). St. (1), assessing
whether explanations accurately captured the details and
context of GA run failures, received 50% full agreement
and 32.6% partial agreement, totaling 82.6% agreement,
which suggests that most developers found the expla-
nations accurate. For St. (3), which focused on the
likelihood of explanations being free from misleading
content, 45.5% fully agreed and 32.7% partially agreed,
resulting in an overall agreement of 78.2%, indicating
that participants generally trusted the reliability of the
explanations. St. (4), which evaluated the precision of
the explanations in diagnosing technical issues, shows
48% full agreement and 30.4% partial agreement, with
a total of 78.4% agreement. St. (5), which addressed the
absence of incorrect content, showed 56% full agreement
and 27.5% partial agreement, leading to 83.5% agree-
ment overall.

Lastly, St. (6), which assessed the logical coherence of
the explanations, received 54% full agreement and 33.1%
partial agreement, totaling 87.1% agreement, indicating
strong approval of the explanations’ logical soundness.

Answer to RQ1

In summary, developers rated the correctness
of LLM-generated explanations positively, with
over 80% agreement across statements on accu-
racy, diagnostic precision, and logical coherence.

IV. CONCISENESS AND CLARITY (RQ2)

To address RQ2, we analyzed developer responses to
statements (2), (7), (8), (9), and (10), each targeting
distinct aspects of the conciseness and clarity of LLM-
generated explanations in the context of GA run failures.



50% 30.3% 9.7%

48% 34.6% 10.6%

53.9% 28.8% 12.9%

42.2% 32.7% 11.4% 8.4%

43.7% 37.1% 10.2%St. 10

St. 9

St. 8

St. 7

St. 2

0255075100

Fully Agree Agree Neutral Disagree Strongly Disagree

Fig. 4. The stacked bar chart shows the levels of agreement of
participants to our statements (2), (7), (8), (9), and (10).

Overall, developers responded positively to statements
evaluating the conciseness and clarity of LLM-generated
explanations (See Fig. 4). St. (2), which assessed the
helpfulness of the explanations, showed 50% full agree-
ment and 30.3% partial agreement, with 80.3% agree-
ment overall, indicating that developers found the ex-
planations useful for diagnosing failures. St. (7), di-
rectly evaluating clarity, received 48% full agreement
and 34.6% partial agreement, reaching 82.6% agreement
overall, emphasis that the explanations were communi-
cated clearly and understandably. St. (8), focusing on
outlining actionable steps, had 53.9% full agreement
and 28.8% partial agreement, with 82.7% agreement
overall. St. (9), assessing the relevance and specificity
of the explanations, obtained 42.2% full agreement and
32.7% partial agreement, resulting in 74.9% agreement
overall, reflecting a moderate level of satisfaction with
the explanations’ ability to address developers’ specific
needs. Finally, St. (10), which measured developers’
confidence in the provided diagnosis, achieved 43.7%
full agreement and 37.1% partial agreement, with 80.8%
agreement overall.

Answer to RQ2

Developers rated the LLM-generated explana-
tions positively for both conciseness and clarity.
For clarity, over 80% of participants found the
explanations easy to understand,. In terms of
conciseness, 74.5% agreed that the explanations
were specific and not overly broad.

V. ACTIONABILITY (RQ3)

Participants evaluated the actionability of the explana-
tions based on LLM attributes. Their responses revealed
five key attributes that shape effective explanations.

Each attribute reflects a distinct aspect of actionability
that developers considered valuable for diagnosing and
resolving GA run failures. Below, we describe these
attributes and explain how they collectively enhance the
actionability of LLM-generated explanations.

A. Clarity of the Explanation (16%)

This category addresses the clarity of the understand-
ing of the explanation, avoiding excessive technical
jargon and providing clear information accessible to
developers at various expertise levels. Here, 16% of the
answers highlighted this quality, indicating its impor-
tance in making explanations universally understandable.
Two key attributes stand out: Clarity in error explanation
and Clarity in the steps to follow.

Clarity in error explanation refers to the transparency
and comprehensibility of the explanation: The error is
described in a straightforward manner, avoiding ambi-
guity. As one participant noted:

° I believe that a useful error explanation should
get straight to the point without saying a lot of
unnecessary things. Furthermore the explanation
should be easily understandable by people that
are just getting started so they can become better
at understanding errors. Last but not least the
steps to fix the issue shouldn’t be too general
because then a google search is better. [ID:5]”

Clarity in steps to follow refers to providing clearly
defined steps to address the failure: Each step is pre-
sented in a logical order, without unnecessary details.

° Clear resolution steps with examples fitting
to the actual code that has one or more er-
rors - Clear problem explanation - References to
trustable sources. [ID:21]”

B. Actionable Guidance (18%).

This category refers to how effectively the explana-
tion provides developers with specific, implementable
steps that are directly related to resolving an specific
error. 18% of the answers highlighted the Precision in
instructions and Direct applicability of suggested steps.

Precision in instructions includes instructions that are
specific, precise, and directly relevant to the problem:
The solution steps leave no room for doubt or interpre-
tation, allowing the developer to apply the instructions
directly. As one participant noted:

° If the tool has access to the source code,
(eg. the Actions config, project code, etc), the
suggestions could actually include diffs designed
to fix the issues. [ID:33]”

Direct applicability of suggested steps describes the
immediate use of the provided steps to resolve the issue:



Developers can follow the instructions without needing
additional research or context.

° 1. Cutting fluff, going straight to the point. 2.
Possible steps to take to fix the problem. [ID:2]”

C. Specificity of Content (18%)

This category describes how well the explanation is
tailored to the specific technical context in which the
failure occurred. 18% of the answers highlighted this
quality, indicating its importance in providing relevant
and accurate information for troubleshooting. The at-
tributes in this category are: Adaptation of content to
the context of the failure and Technical accuracy in
describing the problem.

Adaptation of content to the context of the failure
refers to the altering of the explanation to its specific
environment or configuration:

° Detecting the right context is key for error
detection. If the right context is used, I also such
as the examples given as long as they are small
snippets. If there is more background necessary,
providing a link would be my preferred way. On
CI/CD topics the model is potentially useful, as
you could easily try to use the recommendation
and check if it resolves the issue, but this will
only be helpful if the root cause of the issue is
correctly identified. [ID:4]”

Technical accuracy in describing the problem involves
detailed and accurate descriptions of the error, with all
technical aspects correctly presented:

° Narrowing down where the error happened
and giving a brief explanation of what the com-
mand/process does. It helps also developers that
are only ’consuming’ tests to figure out faster if
the failure is their fault or maybe ci/cd needs
adjustments. [ID:16]”

D. Contextual Relevance (27%)

This category addresses the inclusion of additional
context or external resources to help developers un-
derstand the problem more fully. 27% of the answers
emphasized the importance of contextual relevance in
error explanations. The specific attributes in this category
are Inclusion of relevant links and Explicit mention of
dependencies or technical conflicts.

Inclusion of relevant links involves providing links to
additional information about the error or its resolution:

° Concise information with links to relevant
GitHub Actions documentation, issue trackers,
or other resources that provide more in-depth
information. Also, include the line numbers of the
file where the issue occurs. [ID:6]”

Explicit mention of dependencies or technical conflicts
involves identifying any dependencies or conflicts that
may contribute to the failure:

° Providing definitions of things that developers
take for granted. Referencing components explic-
itly. Eg saying there is a dependency conflict
between lib X and Lib Y. This is better than saying
”there is a conflict between 2 files” You guys have
nailed it. Very nice work. [ID:7]”

E. Conciseness (18%)

This category refers to the provision of brief yet
informative explanations that enable developers to un-
derstand the problem efficiently, focusing on essential
information omitting unnecessary details. 18% of the
answers highlighted the importance of conciseness in
explanations. The specific attributes in this category are
the Ability to quickly summarize the cause of the failure
and the Concise presentation of resolution steps.

The ability to quickly summarize the cause of the
failure involves identifying the root cause of the issue:

° There are too many details in the procedure,
the sentences such as ”Edit the file” and ”Commit
your changes” are superfluous for a developer.
[ID:34]”

Concise presentation of resolution steps includes only
the necessary actions to resolve the issue, presented
clearly and directly. As another participant shared:

° The LLM generated texts are a little bit of
being too long, it could be briefer without losing
content. [ID:27]”

Answer to RQ3

Effective explanations for GitHub Actions run
failures include five key attributes: clarity, which
provides straightforward information; actionable
guidance, offering precise steps for resolution;
specificity, adapting explanations to the techni-
cal context; contextual relevance, adding links
or details about dependencies; and conciseness,
ensuring only essential information is presented.

VI. DISCUSSION AND IMPLICATIONS

This section summarizes key findings for each re-
search question, discussing relevant confounding factors
and implications for future research and practical ap-
plications. In addition to the results we systematically
presented in the last section, we further analyzed various
metrics that we present in this section.

RQ1: Correctness of LLM-Generated Explana-
tions. Our results indicate that LLMs provide accurate



explanations for simpler failures, especially with struc-
tured and concice logs. This aligns with previous studies
that stress the role of well-organized logs in facilitating
error diagnosis in CI/CD environments. For instance,
Vassallo et al. highlight that structured data in CI logs
improves diagnostic efficiency, with LLMs benefiting
from reduced ambiguity and focused log information [5].

LLMs struggle with verbose and unstructured logs
that obscure key information. Sallou et al. highlight
LLMs’ inconsistent performance on unstructured data,
impacting their accuracy in real-world scenarios [42].
In our work, excessive detail in log entries hid critical
error messages, revealing the need for preprocessing to
extract relevant information. For instance, one participant
noted, “... providing definitions of things that developers
take for granted. - Referencing components explicitly. Eg
saying there is a dependency conflict between lib X and
Lib Y”. would greatly enhance correctness. This suggests
that developers cannot use LLMs and prompts directly;
they must tailor preprocessing for specific contexts.
Additionally, preprocessing is crucial for large logs due
to LLMs’ token limits [43].

Our analysis showed that 80% of participants used
CI/CD in their primary activities. This widespread use
shaped their expectations for error explanations, as
CI/CD users gave higher median scores of 4.5 compared
to 3.2 from participants who did not rely on CI/CD as
a primary activity. CI/CD users also rated explanations
more consistently, with a standard deviation of 0.5, while
non-users had a standard deviation of 1.2. These findings
suggest that familiarity with CI/CD practices unifies
perceptions of error explanations. Prior research [5], [44]
supports this observation, showing that structured input
improves diagnostic efficiency in CI/CD contexts.

Our analysis of log length revealed that shorter logs
received higher and more consistent ratings, while longer
logs produced greater variability in responses. This result
suggests that log length influences how participants per-
ceive the explanations. These findings align with prior re-
search showing the value of adaptive summaries tailored
to user experience levels [17]. Customizing explanations
based on developers’ expertise and accounting for log-
specific contextual factors could improve correctness.

RQ2: Conciseness and Clarity of LLM-Generated
Explanations.

The study finds that LLMs generally provide clear and
concise explanations for simple GA run failures, partic-
ularly when logs are structured and free from excessive
complexity or irrelevant information. This observation
supports the notion that conciseness is key to effective
communication in technical contexts. Previous research
by Vassallo et al. [5] emphasizes that well-organized logs
facilitate error diagnosis in CI/CD environments, thereby
enhancing clarity. Furthermore, Xia et al. [44] suggest

that LLMs leverage structured input to produce outputs
that are not only reliable but also easy to understand.

We observed no significant differences in concise-
ness or clarity based on log complexity (i.e., cryptic
error codes, system-specific terminology, and interwo-
ven events that obscure the failure sequence). However,
participants occasionally noted redundancy in the expla-
nations. This aligns with the validity threats discussed
by Sallou et al., who warn that LLMs may introduce
unnecessary details that obscure the main issue [42].
Similarly, Chen et al. highlight that verbosity in LLM-
generated explanations can reduce their effectiveness
when excessive information overshadows important de-
tails [45]. One participant remarked, “narrowing down
where the error happened and giving a brief explanation
of what the command/process does helps developers
figure out faster if the failure is their fault or maybe
CI/CD needs adjustments.” [ID:16].

RQ3: Actionability of LLM-Generated Explana-
tions. The study identifies five key dimensions—clarity,
actionable guidance, specificity, contextual relevance,
and conciseness—as central to the actionability of LLM-
generated explanations for GA failures, independent of
error complexity or developer experience. This aligns
with findings by Xia et al., who emphasize that clarity
and relevance are foundational for effective automated
diagnostics in software engineering [44]. Additionally,
Chen et al. note that without focused guidance, LLM
explanations risk becoming too generalized, which can
reduce their practical impact for both novice and expe-
rienced users [45]. Our results suggest that focusing on
these dimensions may benefit all experience levels.

Interestingly, the study found minimal variation in
actionability perceptions across experience levels, sug-
gesting that LLMs can support a wide range of users with
consistent guidance. However, Sallou et al.. discuss the
limitations of static LLM outputs, especially in failing to
provide the in-depth insights that advanced users might
seek [42]. This suggests a potential improvement area:
developing adaptive models that could provide variable
explanation depth based on user experience, thereby
addressing both basic and advanced informational needs.

Future research could explore dynamic adaptation in
LLM explanations, as proposed by Ye et al., who argue
that personalized guidance based on familiarity enhances
the value of automated explanations [46]. Such adapt-
ability could ensure that LLMs provide universally useful
guidance and cater to the specific cognitive demands of
developers in complex CI/CD environments.

Furthermore, quality of generated output can be im-
proved using numerous ways. Firstly, consensus based
generation [47] would allow different models to unite
their response and utilize different views. Secondly, mod-
els have shown improved reasoning and generation with



chain-of-thought prompting [48], for further explanation
and improvement of results. Lastly, instruction prompt-
ing [49] can be utilized for more fine-grained control
over generated text, for instance output generation based
on the experience of the developer.

Implications for Researchers. Our results suggest
several research directions for improving LLMs’ abil-
ity to support diagnostics in CI/CD environments. For
instance, researchers could focus on refining LLMs
to better handle diverse log structures by developing
preprocessing techniques to filter essential information
within verbose or unstructured logs. An example of this
can be seen in the GA log from the BIDS Valida-
tor project, which shows how clarity can be enhanced
by emphasizing key details.3 Such preprocessing could
enable LLMs to generate accurate explanations even
in complex log contexts. Additionally, adapting LLM
outputs to user-specific contexts based on expertise level
could enhance usability, providing concise, high-level
insights for advanced users and step-by-step guidance for
beginners. Investigating these adaptive mechanisms and
fine-tuning LLM responses for both novice and expert
users offers a promising approach for making LLM-
powered diagnostics more universally applicable.

Implications for Developers. For developers, the
findings suggest practical improvements for LLM-
powered diagnostic tools that could increase explana-
tion accuracy and relevance. Specifically, integrating log
preprocessing features to structure data before analysis
can help LLMs focus on the most critical information,
resulting in clearer and more actionable explanations.
Additionally, adjustable explanation levels could be de-
fined by variables such as the developer’s experience
level, the complexity of the run failure, and the context
of the log data. For instance, developers could tog-
gle between concise summaries for routine errors and
comprehensive guidance for more complex issues. Such
flexibility would make LLM tools more adaptable to
real-world CI/CD workflows, improving troubleshooting
efficiency by delivering the appropriate level of detail
tailored to each developer’s needs.

Practical Applications. The findings from RQ1, RQ2,
and RQ3 suggest that LLM-powered explanations are
generally perceived as accurate, concise, clear, and ac-
tionable by both novice and expert users, with the
potential to enhance CI/CD troubleshooting efficiency
by reducing manual intervention. For instance, a GitHub
Community discussion describes persistent run failure
in GA due to frequent misconfigurations in permissions
and authentication settings, resulting in a run failure4.
Developers in the thread discuss solutions such as adjust-

3https://bit.ly/4fCDOGt
4https://bit.ly/3AoGKYr

ing permissions and optimizing job conditions to prevent
these failures. This example shows how LLMs could
provide automated diagnostics by identifying common
misconfigurations and suggesting corrective actions for
recurring issues. By offering context-sensitive insights,
LLMs could help reduce the high rate of failures in
CI/CD workflows, streamlining the troubleshooting pro-
cess and improving workflow reliability.

VII. THREATS TO VALIDITY

In this section, we outline possible threats to the
validity of our study and show how we mitigated them.

Construct Validity. Due to the fact that our study was
performed in a remote setting in which participants could
work on the tasks at their own discretion, we could
not oversee their behavior. However, we anticipate the
procedure of the experiments and all relevant details on
how to conduct the experiments with a survey guiding
the various steps of participants.

In addition, our study limited the assessment of the log
summaries based on four main metrics (i.e., Correctness,
Conciseness, Clarity, and Actionability), which may
theoretically restrict the generalization of our findings
to these specific metrics. However, we selected them
because they are widely adopted in academia on pre-
vious summary generation and human-based assessment
studies [17], [18].

Internal Validity. As LLMs generate their responses
in a probabilistic manner, additional responses to the
same prompts could have been perceived as better or
worse than those from our survey. A setup where par-
ticipants rate multiple explanations to the same logs
and prompts could have controlled for this. However,
our study-setup was already time-consuming with 45
minutes, and we wanted to ensure enough participants
would complete our survey. Moreover, the study partic-
ipants rated the log summaries based on their perceived
quality of description generated by the approach. To
limit the risks of biased assessments, we clarified the
meaning of the criteria used to assess the log summaries
before the experiments to the participants. Moreover,
we specifically targeted developers who are actively
involved in creating, maintaining, and troubleshooting
GA run failures. Finally, the varying complexity of logs
may lead to varying perceptions of the corresponding
generated summaries. Rather than a threat this is more
of a potential confounding factor we actually investigate
in the context of our study.

Threats to External Validity. The selection of partici-
pants does not represent the general software developer
population. Instead, we specifically targeted relevant de-
velopers (i.e., actively involved in creating, maintaining,
and troubleshooting GA run failures), primarily by ap-
plying a sampling approach that selects a representative

https://bit.ly/4fCDOGt
https://bit.ly/3AoGKYr


set of contributors familiar with GA [36], [37]. To
address other potential bias, we ensured diversity in
terms of developers experience with GA, reducing the in-
fluence of factors beyond professional background. Fur-
thermore, from our results one cannot predict the quality
of explanations of other LLMs and different prompting
techniques, which we did not test systematically. Our
study does not aim to optimize LLM performance or
determine the best model or prompting strategy. Instead,
it explores how LLMs, as an emerging technology, can
enhance developers’ understanding of GitHub Actions
run failures through actionable explanations. This ex-
ploratory work addresses a gap in CI/CD troubleshooting
by identifying trends and providing foundational insights
rather than exhaustive comparisons. . However, our in-
ternal pilot study showed that the three LLMs Llama3,
Llama2, and Mixtral with various prompting tech-
niques returned explanations of similar quality. Recent
studies suggest that modern LLMs achieve hight quality
in summaries and explanations in specific contexts [50].
Finally, further studies will be required to see whether
results generalize to other logs of other programming
languages, an effort which we leave for future work.

VIII. RELATED WORK

This section reviews advancements in automatic sum-
marization within software engineering.

(i) Build failure detection and resolution tools. Several
studies address build failure detection in CI/CD environ-
ments. Vassallo et al. introduced BART to summarize
and resolve Maven build failures and conducted a broad
analysis identifying common CI failure causes across
open-source projects, providing classification methods
for typical errors [5], [51]. Rausch et al. also ex-
amined CI failures, focusing on error categories and
the importance of build stability to support developer
workflows [52]. Additionally, Alfaro et al. proposed
Microprints, a visualization tool to identify errors in
CI/CD logs, although it does not specifically address run
failure explanations [11], [12].

(ii) Challenges and developments in source code sum-
marization and metric evaluation. The lack of standard-
ized datasets complicates source code summarization,
as LeClair et al. highlight the challenges inconsistent
data presents for research outcomes [53]. Moreno et
al. advocate for improved benchmarks to maximize the
utility of automatic summarization for stakeholders [54].
Additionally, Tarar and Zhang’s work on bug report sum-
marization demonstrates efficiency gains by leveraging
syntactic and semantic similarities [55], [56]. Traditional
metrics such as BLEU and ROUGE are critiqued by
Stapleton et al. and Roy et al. for inadequacies in
reflecting developer needs, while newer metrics such as

SIDE, which employ contrastive learning, provide better
alignment with human evaluations [57]–[61].

(iii) The application of neural and federated learning
models in summarization. Neural and federated learn-
ing models have significantly advanced summarization
techniques. Iyer et al.’s CODE-NN, a neural attention
model, surpassed previous methods for summarizing C#
and SQL code [62]. Kumar et al. proposed FedLLM, a
federated learning approach to code summarization that
ensures data privacy while maintaining centralized model
performance [63]. Structured summaries developed by
Moreno et al. and by McBurney and McMillan aid de-
velopers in understanding Java code by using stereotypes
and call graphs [64], [65]. Other works, such as those by
Rastkar and Haiduc, have improved bug report handling
and code entity summarization [66], [67]. Dabrowski’s
review of app review analysis emphasizes their growing
importance in software development, and Nazar and
Panichella show the utility of automated summarization
in software maintenance and debugging [68]–[70].

Collectively, these studies indicate a need for diagnos-
tic tools that not only identify errors but also provide
actionable explanations for complex, unstructured log
data. While previous work has advanced detection, cat-
egorization, and summarization, interpreting run failures
in CI/CD workflows such as those in GA remains a
challenge. Our research builds on these foundations,
aiming to address this gap by leveraging large language
models to enhance troubleshooting support.

IX. CONCLUSION

Our findings show that developers appreciate clear,
concise LLM explanations for simpler issues. However,
as error complexity grows, LLMs often lack accuracy
and detail, underscoring the need for improvement in
complex troubleshooting. Future work should focus on
enhancing LLMs’ capacity to contextualize complex
errors in GA workflows and tailoring explanations for
different expertise levels. Integrating log preprocessing
and customizable explanation settings can potentially
further improve usability, helping LLMs prioritize criti-
cal information and meet diverse troubleshooting needs.
Advancing in these areas may lead to more effective
diagnostic tools, boosting developer productivity and
CI/CD stability.

Acknowledgments. The authors would like to thank
the Swiss Group Software Engineering (CHOOSE) for
sponsoring the trip to the conference.

REFERENCES

[1] M. Golzadeh, A. Decan, and T. Mens, “On the rise and fall of CI
services in GitHub,” in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering. IEEE, 2022,
pp. 662–672.



[2] S. G. Saroar and M. Nayebi, “Developers’ perception of github
actions: A survey analysis,” in Proceedings of the 27th Inter-
national Conference on Evaluation and Assessment in Software
Engineering, 2023, pp. 121–130.

[3] Y. Zhang, Y. Wu, T. Chen, T. Wang, H. Liu, and H. Wang, “How
do developers talk about GitHub actions? evidence from online
software development community,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering,
2024, pp. 1–13.

[4] H.-N. Zhu, K. Z. Guan, R. M. Furth, and C. Rubio-
Gonzalez, “Actionsremaker: Reproducing github actions,” in
2023 IEEE/ACM 45th International Conference on Software
Engineering: Companion Proceedings. IEEE, 2023, pp. 11–15.

[5] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner,
A. Zaidman, M. Di Penta, and S. Panichella, “A tale of ci
build failures: An open source and a financial organization
perspective,” in 2017 IEEE international conference on software
maintenance and evolution. IEEE, 2017, pp. 183–193.

[6] A. Miller, “A hundred days of continuous integration,” in Agile
2008 conference. IEEE, 2008, pp. 289–293.

[7] B. Wilkes, A. M. P. Milani, and M.-A. Storey, “A framework
for automating the measurement of devops research and assess-
ment (dora) metrics,” in 2023 IEEE International Conference on
Software Maintenance and Evolution. IEEE, 2023, pp. 62–72.

[8] Z. Zeng, T. Xiao, M. Lamothe, H. Hata, and S. McIntosh, “How
trustworthy is your ci accelerator? a comparison of the trustwor-
thiness of ci acceleration products,” IEEE Software, 2024.

[9] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R.
Lyu, “Tools and benchmarks for automated log parsing,” in
2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice. IEEE, 2019,
pp. 121–130.

[10] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report:
Deep learning-based system log analysis for anomaly detection,”
arXiv preprint arXiv:2107.05908, 2021.

[11] S. Alfaro, A. Bergel, and J. Simmonds, “Detecting ci/cd workflow
errors through visual inspection of logs,” Authorea Preprints,
2024.

[12] ——, “mu printgen: Supporting workflow logs analysis through
visual microprint,” in 2023 IEEE Working Conference on Soft-
ware Visualization. IEEE, 2023, pp. 45–49.

[13] A. Mastropaolo, M. Ciniselli, M. Di Penta, and G. Bavota,
“Evaluating code summarization techniques: A new metric and
an empirical characterization,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024,
pp. 1–13.

[14] A. Mastropaolo, F. Zampetti, G. Bavota, and M. Di Penta,
“Toward automatically completing GitHub workflows,” in Pro-
ceedings of the 46th IEEE/ACM International Conference on
Software Engineering, 2024, pp. 1–12.

[15] R. Tufano, O. Dabić, A. Mastropaolo, M. Ciniselli, and
G. Bavota, “Code review automation: strengths and weaknesses
of the state of the art,” IEEE Transactions on Software Engineer-
ing, 2024.

[16] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. My-
ers, “Using an llm to help with code understanding,” in Proceed-
ings of the IEEE/ACM 46th International Conference on Software
Engineering, 2024, pp. 1–13.

[17] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C.
Gall, “The impact of test case summaries on bug fixing perfor-
mance: An empirical investigation,” in Proceedings of the 38th
international conference on software engineering, 2016, pp. 547–
558.

[18] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change
in my app? summarizing app reviews for recommending software
changes,” in Proceedings of the 2016 24th ACM SIGSOFT
international symposium on foundations of software engineering,
2016, pp. 499–510.

[19] P. Valenzuela-Toledo, C. Wu, S. Hernández, A. Boll,
R. Machacek, S. Panichella, and T. Kehrer, “Explaining

github actions failures with large language models: Challenges,
insights, and limitations,” Jan. 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.14750197

[20] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot:
How programmers interact with code-generating models,” Pro-
ceedings of the ACM on Programming Languages, vol. 7, no.
OOPSLA1, pp. 85–111, 2023.

[21] R. Cheng, R. Wang, T. Zimmermann, and D. Ford, ““it would
work for me too”: How online communities shape software
developers’ trust in ai-powered code generation tools,” ACM
Transactions on Interactive Intelligent Systems, vol. 14, no. 2,
pp. 1–39, 2024.

[22] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C.
Desmarais, and Z. M. J. Jiang, “Github copilot ai pair program-
mer: Asset or liability?” Journal of Systems and Software, vol.
203, p. 111734, 2023.

[23] P. Denny, V. Kumar, and N. Giacaman, “Conversing with copilot:
Exploring prompt engineering for solving cs1 problems using
natural language,” in Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, 2023, pp. 1136–
1142.

[24] S. Imai, “Is github copilot a substitute for human pair-
programming? an empirical study,” in Proceedings of the
ACM/IEEE 44th International Conference on Software Engineer-
ing: Companion Proceedings, 2022, pp. 319–321.

[25] D. Jayagopal, J. Lubin, and S. E. Chasins, “Exploring the
learnability of program synthesizers by novice programmers,”
in Proceedings of the 35th Annual ACM Symposium on User
Interface Software and Technology, 2022, pp. 1–15.

[26] E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach,
C. J. Cai, and M. Terry, “Discovering the syntax and strategies of
natural language programming with generative language models,”
in Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, 2022, pp. 1–19.

[27] GitHub, “Top programming languages of 2022 - github
octoverse,” 2022, accessed: 2024-11-07. [Online]. Available:
https://octoverse.github.com/2022/top-programming-languages

[28] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in
github for msr studies,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories. IEEE, 2021, pp.
560–564.

[29] GitHub, Inc., “Storing and sharing data from
a workflow,” https://docs.github.com/en/actions/
writing-workflows/choosing-what-your-workflow-does/
storing-and-sharing-data-from-a-workflow, 2024, accessed:
2024-08-26.

[30] N. R. Weeraddana, X. Xu, M. Alfadel, S. McIntosh, and M. Na-
gappan, “An Empirical Comparison of Ethnic and Gender Diver-
sity of DevOps and non-DevOps Contributions to Open-Source
Projects,” Empirical Software Engineering, vol. 28, no. 150, p.
1–37, 2023.

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix et al., “Llama: Open and efficient foundation language
models,” in arXiv preprint arXiv:2302.13971, 2023.

[32] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell
et al., “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems, vol. 33, 2020, pp. 1877–
1901.

[33] H. Zhang, Y. Sun, and Y. Qi, “Comparative analysis of pre-
trained language models for natural language understanding,” in
Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, 2021.

[34] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Ma-
chine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.

[35] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised multitask learn-
ers,” in OpenAI Technical Report, 2019.

https://doi.org/10.5281/zenodo.14750197
https://octoverse.github.com/2022/top-programming-languages
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/storing-and-sharing-data-from-a-workflow
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/storing-and-sharing-data-from-a-workflow
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/storing-and-sharing-data-from-a-workflow


[36] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in
software engineering research,” in Proceedings of the 2013 9th
joint meeting on foundations of software engineering, 2013, pp.
466–476.

[37] S. Baltes and P. Ralph, “Sampling in software engineering
research: A critical review and guidelines,” Empirical Software
Engineering, vol. 27, no. 4, p. 94, 2022.

[38] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmer-
mann, “Improving developer participation rates in surveys,” in
2013 6th International workshop on cooperative and human
aspects of software engineering. IEEE, 2013, pp. 89–92.

[39] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,”
in Guide to advanced empirical software engineering. Springer,
2008, pp. 63–92.

[40] P. Ralph, N. b. Ali, S. Baltes, D. Bianculli, J. Diaz, Y. Dittrich,
N. Ernst, M. Felderer, R. Feldt, A. Filieri et al., “Empirical
standards for software engineering research,” arXiv preprint
arXiv:2010.03525, 2020.

[41] T. Zimmermann, “Card-sorting: From text to themes,” in Per-
spectives on data science for software engineering. Elsevier,
2016, pp. 137–141.

[42] J. Sallou, T. Durieux, and A. Panichella, “Breaking the silence:
the threats of using llms in software engineering,” in Proceed-
ings of the 2024 ACM/IEEE 44th International Conference on
Software Engineering: New Ideas and Emerging Results, 2024,
pp. 102–106.

[43] L. Da Silva, J. Samhi, and F. Khomh, “Chatgpt vs llama: Impact,
reliability, and challenges in stack overflow discussions,” arXiv
preprint arXiv:2402.08801, 2024.

[44] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in
the era of large pre-trained language models,” in 2023 IEEE/ACM
45th International Conference on Software Engineering. IEEE,
2023, pp. 1482–1494.

[45] L. Chen, M. Zaharia, and J. Zou, “How is chatgpt’s behavior
changing over time?” arXiv preprint arXiv:2307.09009, 2023.

[46] W. Ye, M. Ou, T. Li, X. Ma, Y. Yanggong, S. Wu, J. Fu, G. Chen,
H. Wang, J. Zhao et al., “Assessing hidden risks of llms: an
empirical study on robustness, consistency, and credibility,” arXiv
preprint arXiv:2305.10235, 2023.

[47] M. A. Bakker, M. J. Chadwick, H. R. Sheahan, M. H. Tessler,
L. Campbell-Gillingham, J. Balaguer, N. McAleese, A. Glaese,
J. Aslanides, M. M. Botvinick, and C. Summerfield, “Fine-tuning
language models to find agreement among humans with diverse
preferences,” in Proceedings of the 36th International Conference
on Neural Information Processing Systems, ser. NIPS ’22. Red
Hook, NY, USA: Curran Associates Inc., 2024.

[48] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. H. Chi, Q. V. Le, and D. Zhou, “Chain-of-thought prompting
elicits reasoning in large language models,” in Proceedings of the
36th International Conference on Neural Information Processing
Systems, ser. NIPS ’22. Red Hook, NY, USA: Curran Associates
Inc., 2024.

[49] B. Xu, A. Yang, J. Lin, Q. Wang, C. Zhou, Y. Zhang, and
Z. Mao, “Expertprompting: Instructing large language models
to be distinguished experts,” CoRR, vol. abs/2305.14688, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2305.14688

[50] Y. L. Liu et al., “Responsible AI considerations in text summa-
rization research: A review of current practices,” in Findings of
the Association for Computational Linguistics. Association for
Computational Linguistics, 2023, p. 413.

[51] C. Vassallo, S. Proksch, T. Zemp, and H. C. Gall, “Every
build you break: developer-oriented assistance for build failure
resolution,” Empirical Software Engineering, vol. 25, pp. 2218–
2257, 2020.

[52] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows
of java-based open-source software,” in 2017 IEEE/ACM 14th In-
ternational Conference on Mining Software Repositories. IEEE,
2017, pp. 345–355.

[53] A. LeClair and C. McMillan, “A dataset for studying the evolu-
tion of source code summarization,” in Proceedings of the 2019

IEEE/ACM 16th International Conference on Mining Software
Repositories. IEEE, 2019, pp. 377–388.

[54] L. Moreno et al., “Automatic software summarization: A system-
atic literature review,” Journal of Systems and Software, vol. 140,
pp. 62–85, 2018.

[55] A. Tarar et al., “An empirical study on bug report summa-
rization,” in Proceedings of the 2019 35th IEEE International
Conference on Software Maintenance and Evolution. IEEE,
2019, pp. 103–113.

[56] L. Zhang et al., “Rencos: Improving code summarization with
retrieved similar codes,” in Proceedings of the 2020 ACM/IEEE
42nd International Conference on Software Engineering. ACM,
2020, pp. 90–100.

[57] A. Stapleton et al., “Human vs. machine-generated summaries:
A comprehension study,” in Proceedings of the 2020 ACM/IEEE
International Conference on Software Engineering. ACM, 2020,
pp. 232–242.

[58] S. Roy et al., “Reassessing the use of bleu and meteor in source
code summarization tasks,” Empirical Software Engineering,
vol. 26, no. 1, pp. 1–23, 2021.

[59] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt
evaluation with improved correlation with human judgments,”
in Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summa-
rization, 2005, pp. 65–72.

[60] M. Haque et al., “Semantic similarity metrics for evaluating
code summarization techniques,” in Proceedings of the 2022
IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2022, pp. 320–330.

[61] G. Mastropaolo et al., “Side: A contrastive learning metric for
code summarization evaluation,” in Proceedings of the 2024
ACM/IEEE International Conference on Software Engineering,
2024.

[62] S. Iyer et al., “Summarizing source code using neural attention
models,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, 2016, pp. 207–215.

[63] V. Kumar et al., “Fedllm: Federated learning-based large lan-
guage models for code summarization,” Journal of Software
Engineering, 2024.

[64] L. Moreno et al., “Automatic generation of natural language sum-
maries for java classes,” in Proceedings of the 2013 IEEE/ACM
28th International Conference on Automated Software Engineer-
ing, 2013, pp. 230–240.

[65] P. McBurney and C. McMillan, “Automatically summarizing
java methods: A context-based approach,” in Proceedings of
the 2016 IEEE/ACM 38th International Conference on Software
Engineering, 2016, pp. 499–510.

[66] S. Rastkar et al., “Summarizing software artifacts: A bug report
case study,” in Proceedings of the 2014 ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(FSE), 2014, pp. 110–120.

[67] S. Haiduc et al., “On the use of automated text summarization
techniques for summarizing source code,” in Proceedings of the
2010 ACM/IEEE 32nd International Conference on Software
Engineering, 2010, pp. 223–233.

[68] L. Dabrowski et al., “A systematic review of app review analysis
in software engineering,” Journal of Systems and Software, vol.
190, p. 110789, 2022.

[69] L. Nazar et al., “Summarizing software artifacts using machine
learning: a comprehensive review,” Journal of Software: Evolu-
tion and Process, vol. 28, pp. 170–188, 2016.

[70] S. Panichella et al., “Summarization techniques for software
artifacts: a comprehensive review,” ACM Computing Surveys,
vol. 50, no. 2, pp. 1–34, 2018.

https://doi.org/10.48550/arXiv.2305.14688

	Introduction
	Study Design
	Data Collection
	Data Analysis

	Correctness (RQ1)
	Conciseness and Clarity (RQ2)
	Actionability (RQ3)
	Clarity of the Explanation (16%)
	Actionable Guidance (18%).
	Specificity of Content (18%)
	 Contextual Relevance (27%)
	Conciseness (18%)

	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion
	References

