
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Decades of GNU Patch and Git Cherry-Pick: Can We Do Better?
Anonymous Author(s)

Abstract
Patching is a fundamental software maintenance and evolution
task enabling the (semi-)automated propagation of changes across
different software versions. Established and widely used language-
agnostic patchers, such as GNU patch and Git cherry-pick, work on
textual artifact representations (i.e., files) and typically rely on line
numbers and contexts (i.e., surrounding unchanged text fragments)
to apply changes. This strategy often fails if source and target of a
patch differ: Some required changes may be rejected, others may
be applied at the wrong location; provoking cumbersome manual
effort. In this paper, we study the effectiveness of commonly-used
patchers, and propose a novel technique that significantly increases
the level of patch automation. First, we curate and analyze a large
dataset of more than 400,000 patch scenarios (i.e., cherry picks)
from 5,000 GitHub projects. Next, we examine the effectiveness
of established patchers on the gathered patch scenarios, observ-
ing that patchers often fail to apply changes correctly. Third, we
develop a novel language-agnostic patch technique, mpatch, that
utilizes a source-to-target matching to determine suitable change
locations. By comparing mpatch to other patchers, we find that
it can correctly apply 44% more patches automatically than other
language-agnostic patchers, while it also requires fewer manual
fixes in cases that cannot be automated completely. Thus, mpatch
considerably reduces the burden of manually fixing failed patches
in practice, specifically in projects with frequent patch applications.

Keywords
patching, cherry-picking, variant synchronization, change propa-
gation, software maintenance, git

ACM Reference Format:
Anonymous Author(s). 2018. Decades of GNU Patch and Git Cherry-Pick:
CanWe Do Better?. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation email (Conference acronym ’XX). ACM,
New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Patching is a core software maintenance activity which allows
developers to propagate fine-grained software updates among soft-
ware versions. Patches are applied by patching tools or patchers,
such as GNU patch which is potentially the most well-known im-
plementation of document patching. GNU patch lies at the heart of
many software maintenance tasks for decades, such as contributing
to the Linux kernel [14]. Patches summarize changes to a file that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

A1 A2

source
. . .

changed source

B1 B2 . . .

target patched target

· · ·

· · ·

patch

Figure 1: Re-applying changes from a source on a target ver-
sion via a patch.

can be reapplied to copies of the file. These copies may reside, for
instance, on different development branches in a version control
system [8, 38]. Figure 1 presents an example of such a patch sce-
nario in which a developer applies a patch from a source to a target
version. Contrary to merging development branches [25], patching
usually does not transfer all changes that occurred on a branch
but a desired subset of changes, which is also known as cherry
picking [29]. Most patchers expect a list of changes performed on a
source version as input, and apply these changes to one or more
target versions in form of a patch. For each target version, they try
to identify the most suitable locations for the changes in the target
and which changes should be applied.

While patching is trivial in cases where the source and target
version of the patch are identical, it becomes challenging when the
source and target version differ [34, 44]. In such cases, patchers
often apply the changes at wrong locations or even fail to apply
them at all. For such complex patch scenarios, prior work found
that current language-agnostic patchers provoke a particularly high
rate of rejected changes in the Linux kernel [34, 44] requiring costly
manual fixes.

To address the shortcomings of established language-agnostic
patchers, such as GNU patch, several language-specific patchers
have been proposed in the literature [23, 24, 31, 34, 35, 37, 44].
Typically, language-specific patchers parse code into structured
representations, such as abstract syntax trees (ASTs), on which they
then operate. This allows them to transform patches to align them
with the target variant, and to complement a patch with additional
changes that are required to receive a correct program (e.g., by
adding missing includes). However, their applicability is limited
to the patching of source code, specifically source code written
in a programming language that the patcher supports. Therefore,
they may complement language-agnostic patchers, but they cannot
generally replace them. Even for source code artifacts, language-
specific techniques proposed within the research literature in the
broader context of software version control have had little to no
practical impact [10]. This observation remains true today.

In this work, we acknowledge the status quo that language-
agnostic, general-purpose patchers, such as GNU Patch and Git

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L182
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/blob/28715b584ab25dedc600cc2d5d22866865026bf7/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L170
https://github.com/apache/hadoop/commit/28715b584ab25dedc600cc2d5d22866865026bf7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Cherry-Pick, remain the state-of-the-art in document patching in
the context of software version control. However, we show that sig-
nificant improvements are still possible, even without loosing the
important generality feature of current text-based patchers. Specif-
ically, we significantly increase the percentage of patches that can
be correctly applied without additional manual effort by proposing
a novel language-agnostic patcher, called mpatch. During patching,
mpatch computes a matching, identifying the commonalities of the
source and target version (i.e., common lines of text). Using this
match-based approach, it applies patches more successfully than
other language-agnostic patchers without loosing applicability.

In a large-scale evaluation, we demonstrate that current language-
agnostic patchers perform unsatisfactory in various patch scenarios.
We mine a dataset comprising 423,717 patch scenarios from 5,000
popular projects on GitHub, covering the 10 most used project
languages. We evaluate the effectiveness of the language-agnostic
patchers GNU patch, Git apply, and Git cherry-pick by measuring
precision, recall, and the number of required manual fixes. Overall,
the patchers exhibit high precision but a low automation percentage.
The considered patchers apply less than 50% of complex patches
correctly, provoking great manual effort by the developers.

We then compare the quality of mpatch with the established
patchers and find thatmpatch significantly increases the number of
patches that are correctly applied, reducing the number of patches
that require manual fixes. Furthermore, mpatch requires signifi-
cantly fewer fixes if it does not apply a patch correctly. To gauge
the potential impact of improving language-agnostic patching, we
investigate projects from our dataset that heavily use patching. We
compute the impact mpatch would have, if the resulting projects
adopted it. As a result, we find that mpatch has the potential for
substantially reducing the manual efforts in such projects.

Overall, we gain strong empirical evidence that mpatch con-
siderably improves language-agnostic patching while remaining
applicable to a broad spectrum of patch scenarios in various projects.
In summary, we contribute

• a dataset comprising 423,717 patch scenarios (i.e., cherry-
picks) mined from 5,000 popular projects on GitHub;

• a study of the prominence of patching in practice and the
frequency of challenging patch scenarios;

• mpatch: a novel language-agnostic patcher that utilizes a
source-to-target matching;

• an extensive empirical evaluation and comparison of the ef-
fectiveness ofmpatch and other language-agnostic patchers
in a mutlitude of patch scenarios;

• an online reproduction package [3], comprising our novel
dataset, our implementation of mpatch, the experimental
setup, and all results.

2 Motivation
In this section, we first describe the concept of patching using a mo-
tivational example. We then present the state-of-the-art language-
agnostic patching tools and explain their approaches.

2.1 Language-Agnostic Patching
Language-agnostic patching, from here on referred to as ‘patching’,
reduces the effort of applying the same changes to multiple versions

--- WebHdfsFileSystem.java

+++ WebHdfsFileSystem.java

@@ -181,6 +182,7 @@
[...]

private DFSOpsCountStatistics storageStatistics;

private KeyProvider testProvider;

+ private boolean isTLSKrb;

/**

* Return the protocol scheme for the FileSystem.

@@ -242,6 +244,7 @@
.newDefaultURLConnectionFactory(connectTimeout ,

readTimeout , conf);

}

+ this.isTLSKrb = "HTTPS_ONLY ". equals(conf.get(
DFS_HTTP_POLICY_KEY));

ugi = UserGroupInformation.getCurrentUser ();

this.uri = URI.create(uri.getScheme () + "://" + uri.

getAuthority ());

[...]

Figure 2: Adapted patch for commit ba66f3b of hadoop.

of a file. Typically, such changes are first performed manually on
one version and should be repeated on other versions that may
benefit from these changes, e.g., because the changes fix a crucial
bug. Changes can be applied to a target version as a patch.

In practice, a patch typically is represented as a diff that doc-
uments changes to a source version, including unchanged text
that surrounds the changes (i.e., their context) in a unified for-
mat, aka. (asymmetric) difference [16], (directed) delta [8], or edit
script [15]. A unified diff aggregates changes with overlapping con-
text in a hunk that groups related changes and defines the location
of the changes in the source file. Figure 2 presents an example of
such a unified diff, which we adapted from the commit ba66f3b
in Apache hadoop. It comprises several changes that insert new
code for a Transport Layer Security verification in the Java file
WebHdfsFileSystem.java, grouped into two hunks (starting at
lines L181 and L242). Lines to be inserted by the patch are shown
in green, surrounded by three context lines.

Over time, source and target of a patch may diverge – this is
the case for the source and target of our example. If a divergence
affects files to be patched, a patch created from the diff between
the source and changed source may no longer suit the target. The
changes in the two hunks of the patch shown in Figure 2 cannot
be easily applied to the target because they need to be placed in a
different location. Figure 3 shows excerpts of the source and target
file, focusing on the location where the Line “private boolean
isTLSKrb;” from the first hunk should be inserted. This location is
indicated by a green arrow; common lines are highlighted in blue.
In the source file, the line is inserted below L183, while in the target
file it should be inserted below L171.

For the second hunk of our example, we observe a similar alter-
ation in location and context. In general, depending on how much
the source and target versions diverged, some changes cannot be
applied because the location of some changes may not be found,
or it is questionable whether a change is actually required in the

2

https://github.com/apache/hadoop/commit/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7
https://github.com/apache/hadoop
https://github.com/apache/hadoop/commit/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7
https://github.com/apache/hadoop
https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Decades of GNU Patch and Git Cherry-Pick: Can We Do Better? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

179 private String restCsrfCustomHeader;

180 private Set<String> restCsrfMethodsToIgnore;

181
182 private DFSOpsCountStatistics statistics;

183 private KeyProvider testProvider;

184
185 /**

186 * Return the protocol for the FileSystem

187 *

188 * @return <code >webhdfs </code >

167 private Set<String> restCsrfMethodsToIgnore;

168 private static final ObjectReader READER =

169 new ObjectMapper ().reader(Map.class);
170
171 private DFSOpsCountStatistics statistics;

172
173 /**

174 * Return the protocol for the FileSystem

175 * <p/>

176 *

Figure 3: Excerpt from the source file (left) and target file (right) of our exemplary patch scenario from commit ba66f3b in
Apache hadoop. Common lines are highlighted in blue. The green arrows indicate where the change of the first hunk in Figure 2
was inserted in the source file and should be inserted in the target.

target. Patchers typically reject changes if it is uncertain whether
or where to apply them, so that they can be applied manually.

2.2 Current Language-Agnostic Patchers
We consider three language-agnostic in this paper: GNU patch [42],
Git apply [39], and Git cherry-pick [40]. Naturally, this list is in-
complete as other version control systems (VCS) (e.g., Mercurial
or Subversion), editors, and IDEs contain their own patch utilities.
Additionally, search and replace utilities, such as the stream edi-
tor GNU sed, could be appropriated for patching. In this work, we
focus on patchers used by Git and Unix-based operating systems.
Git, with its patchers Git apply and Git cherry-pick, is the most
popular VCS [12], and GNU patch has great impact in open-source
development (e.g., Linux kernel [14]).

2.2.1 GNU patch. The first release of GNU patch [42] was in 1985.
Despite its age, it is still actively maintained, with the latest com-
mit in February 2025 (as of February 2025), and remains a core
development package of many Unix-based distributions.

GNU patch expects a unified diff as input, and then applies these
changes based on their line number and context. For each hunk in
a patch, GNU patch searches the hunk’s context, starting at the line
number specified in the hunk. Searching above and below that line
number, GNU patch applies the changes at the first location with an
identical context. If it cannot find the context in the file, it relaxes
the context by removing the outermost line of the leading and
trailing context and repeats the search. In its default configuration,
GNU patch repeats this context relaxation at most twice. Thus, GNU
patch allows for differences between the source and the target of a
patch, except for the most direct neighboring context. If GNU patch
finds no suitable context, it reports the hunk as rejected.

Following this approach, GNU patch might apply changes incor-
rectly or reject required changes if the source and target versions
diverged substantially. When applying the patch of Figure 2 to the
target in Figure 3 (right),GNU patch rejects the first hunk containing
the insertion of private boolean isTLSKrb; because the context
line before is different. In general, GNU patch may reject changes if
the first leading or trailing context line diverges. Besides rejecting
the first hunk of our example, GNU patch applies the change in the
second hunk to a wrong location. This mistake occurs because GNU
patch applies changes to the first suitable location, which may not
be the correct one, especially in cases with several similar contexts.

2.2.2 Git apply. Git comprises two patch utilities, Git apply [39]
and Git cherry-pick [40]. The former is Git’s counterpart to GNU
patch and uses a similar, context-based approach. In contrast to
GNU patch, however, Git apply’s default configuration is much
more conservative regarding differences between the source and
target version. The complete context of a hunk must fit and if a
single hunk of a patch is rejected, Git apply rejects the entire patch.
To override this behavior, Git apply provides a --reject option.
This option applies all applicable hunks and reports rejected hunks
in a manner similar to GNU patch.

In both configurations, Git apply rejects the two hunks of our
motivating example (cf. Figure 2), as the contexts of the hunks
do not exactly fit the target version. In general, we expect that Git
apply will reject required changes more frequently than GNU patch.

2.2.3 Git cherry-pick. Git’s second utility is Git cherry-pick [40]
which can be used to transfer one ormore commits between branches
without a full merge of these branches. It is tightly integrated with
Git’s version control and requires a commit history; specifically, it
can only be applied if the source and target version have a common
ancestor in the commit history. Given a list of commits, Git cherry-
pick reapplies the changes of these commits to the current working
tree one-by-one, creating a new commit for each applied patch.

If source and target of a cherry pick have diverged, Git cherry-
pick may encounter conflicts. Git cherry-pick tries to merge these
files using the samemerge strategy as git merge. Using git’s default
configuration, Git cherry-pick applies changes if they are not part
of a conflicting hunk (i.e., hunks whose context diverged in source
and target). For conflicting hunks, Git cherry-pick writes the conflict
directly into the file by concatenating the hunk of the source and
the hunk of the target, highlighting it with conflict markers. Such
conflicts must be resolved manually.

In our experience, Git cherry-pick can reliably identify the cor-
rect location for a change in most cases by considering the common
ancestor of source of target version. However, for diverged ver-
sions, Git cherry-pick may report merge conflicts even though the
conflicting changes could simply be applied. Each conflict requires
manual effort to resolve. For the patch of our motivating exam-
ple, Git cherry-pick would report merge conflicts for both hunks,
provoking manual intervention.

3

https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169
https://github.com/apache/hadoop/commit/ba66f3b454a5f6ea84f2cf7ac0082c555e2954a7
https://github.com/apache/hadoop

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1 mpatch

1: procedure mpatch(𝑉𝑆 ,𝑉𝑇 ,Δ𝑉𝑆⇒𝑉𝑆′) ⊲ Source, target, patch
2: 𝑉 ′

𝑇
← 𝑉𝑇 , R ← {} ⊲ Initialize output

3: 𝑀𝑆,𝑇 ← match(𝑉𝑆 ,𝑉𝑇) ⊲ match source and target
4: for 𝛿 ∈ Δ𝑉𝑆⇒𝑉𝑆′ do ⊲ For each change group
5: (𝛿 ′,R′) ← filter(𝛿,𝑀𝑆,𝑇) ⊲ filter invalid changes
6: R ← R ∪ R′ ⊲ Update rejects
7: for 𝑑 ∈ 𝛿 ′ do ⊲ Apply each change
8: 𝑙𝑆 ← select 𝑙 ∈ 𝑉𝑆 changed by 𝑑
9: 𝑙𝑇 ← select 𝑙 ∈ 𝑉𝑇 with (𝑙𝑆 , 𝑙𝑇) ∈ 𝑀𝑆,𝑇

10: 𝑉 ′
𝑇
← apply(𝑉 ′

𝑇
, 𝑀𝑆,𝑇 , 𝑙𝑇 , 𝑑)

11: end for
12: end for
13: return (𝑉 ′

𝑇
,R) ⊲ patched target and rejected changes

14: end procedure

3 The Novel Language-Agnostic Patcher mpatch
Based on our practical experiences with patching, we find that the
shortcomings of current language-agnostic patchers can likely be
mitigated by utilizing a source-to-target matching, identifying the
commonalities (i.e., common lines of text) of the versions. Current
patchers either rely on a context which only contains information
about the source version, but not the target, or on merging changes
with respect to a common ancestor version, which may produce
tedious merge conflicts. In contrast, a matching helps with identify-
ing the correct locations for changes in a patch, because it explicitly
identifies the commonalities between the source and target versions.
To this end, we developed mpatch, a new match-based patcher.

3.1 Patching Algorithm
The main workflow of the patching algorithm used by mpatch is
given in Algorithm 1. The algorithm relies on three configurable
operators, match, filter, and apply, which we will explain later in
this section.

The input for the algorithm is the source version 𝑉𝑆 , the target
version 𝑉𝑇 , and a patch Δ𝑉𝑆⇒𝑉𝑆′ (aka. directed delta). A version 𝑉
is the set of all lines of text in all files associated with the version,
and each line is equipped with a line number and the respective
file paths. Each change group 𝛿 ∈ Δ𝑉𝑆⇒𝑉𝑆′ consists of related
changes and their corresponding lines (e.g., 𝛿 could be a hunk of
a unified diff). First, mpatch initializes the patch result 𝑉 ′

𝑇
and the

set of rejected changes R. Then, the match operator determines
a matching 𝑀𝑆,𝑇 ⊆ 𝑉𝑆 × 𝑉𝑇 between 𝑉𝑆 and 𝑉𝑇 that defines the
corresponding lines of the source and target versions.

Starting from line 4, mpatch iterates over each change group
𝛿 ∈ Δ𝑉𝑆⇒𝑉𝑆′ and filters invalid changes with the filter operator,
yielding a filtered change group 𝛿 ′ and a set of filtered (aka. rejected)
changes R′. Whether a change is invalid is determined based on the
matching𝑀𝑆,𝑇 , for example, a change is invalid if it removes a line
that does not exist in the target variant. Without a filter, mpatch
would still be able to apply changes, but it would not be able to
determine whether lines inserted in the source version should also
be inserted in the target version, which could lead to incorrect
insertions. After filtering, mpatch applies the remaining changes
in 𝛿 ′ with the apply operator one-by-one. For each change 𝑑 ∈ 𝛿 ′,

mpatch selects the line 𝑙𝑇 ∈ 𝑉𝑇 that corresponds to the changed line
𝑙𝑆 ∈ 𝑉𝑆 according to 𝑀𝑆,𝑇 . Then, mpatch applies the change with
the apply operator, yielding an updated target version 𝑉 ′

𝑇
. Finally,

mpatch returns 𝑉 ′
𝑇
and R.

3.2 Implementation
Algorithm 1 requires a concrete implementation of match, filter,
and apply. In the following, we define a concrete implementation
of each operator, which we use to investigate the effectiveness of
match-based patching with mpatch. With these operators, we im-
plemented a prototype of mpatch [3] in Rust to evaluate mpatch’s
effectiveness and compare it to other patchers. Our Rust imple-
mentation offers a command line interface, similar to GNU patch:
The prototype accepts unified diffs as input for Δ𝑉𝑆⇒𝑉𝑆′ in which
changes are grouped in hunks and consist of line insertions and
deletions. The source and target version are given by the path to
their root directory. With this interface, mpatch could already be
used in most cases in which GNU patch is applied and could also
be integrated in a VCS like Git.

Match. Our implementation of the match operator determines a
source-to-target matching𝑀𝑆,𝑇 based on the largest common sub-
sequence (LCS) [27] of lines between each file and its counterpart
in the target version. First, mpatch matches the common files of
source and target. Similar to GNU patch, mpatch considers all files
that were changed in the given diff and locates their counterparts in
the target version based on the file path. If a file has no counterpart,
its content is automatically treated as unmatched. If a counterpart
is found, the source and target files are compared using the LCS to
match their content. Given two files, mpatch applies Myers’ LCS
algorithm [27] that determines the LCS by iteratively searching for
the shortest path in an edit graph that models all possible ways to
transform one file into the other, which implicitly yields commonal-
ities. For the source and target files of our motivating example, LCS
correctly matches the common lines of both files as highlighted
in Figure 3. We selected LCS for its broad applicability.

Filter. Our implementation of the filter operator considers a
change as undesired when it affects lines of the source version
that have no match in the target. Here, mpatch differentiates be-
tween inserted and deleted lines. Inserted lines cannot have a match
because they do not exist yet, thus,mpatch considers the lines above
and below the inserted line in the source version. If the neighboring
lines directly above or below have a match in the target, the change
is kept; therebympatch accounts for prepending or appending lines
to matched content. In our motivating example, mpatch keeps the
changes because they insert lines next to matched lines. Specifi-
cally, the insertion in the first hunk happens directly above several
matched lines as shown in Figure 3. In contrast, deleted lines must
have a match in the target, because they could not be deleted oth-
erwise. Besides yielding a filtered change group 𝛿 ′, the filter also
yields a set of filtered changes R, i.e., rejected changes – similar to
rejects being reported by GNU patch. These filtered changes may
be reviewed by a user after patch application.

Apply. The changes in the patch are applied to the target version
according to the source-to-target matching𝑀𝑆,𝑇 . Our implemen-
tation of apply also differentiates between changes that insert and

4

https://github.com/apache/hadoop/blob/257b04ce4e153cb88dfc59eab63625909efdd56b/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L181
https://github.com/apache/hadoop/blob/4cf7bbf04345a9e72302eca536b5975bee5c4e47/hadoop-hdfs-project/hadoop-hdfs-client/src/main/java/org/apache/hadoop/hdfs/web/WebHdfsFileSystem.java#L169

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Decades of GNU Patch and Git Cherry-Pick: Can We Do Better? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

delete lines. For a line deletion, the line to be removed is matched
to the deleted source line. For lines to be inserted, however, there
is no direct match that determines the location of the insertion.
Therefore, mpatch considers the lines adjacent to the inserted line
in the source variant from which the patch was created. Depending
on where it was inserted in the source, mpatch inserts the line
below, above, or in between the closest matched line(s). For the
first change of our motivating example, mpatch inserts the line
directly below L171 in Figure 3, as this location is surrounded by
the matches of the lines where the change was originally applied
in the source version.

4 Evaluation Methodology
The central goal of our paper is to evaluate the effectiveness of
different approaches to language-agnostic patching, and improve
patch automation in scenarios where the target of a patch differs
from the source. To this end, we now present our study that aims to
understand the effectiveness of current patchers in such scenarios
(RQ1), to which degree our new patcher mpatch, presented in the
prior section, can improve patch automation (RQ2), as well as the
potential impact of match-based patching (RQ3).

RQ1: How effective are existing language-agnostic patchers
in complex patch scenarios?

Previous work on patching in the Linux kernel found that GNU
patch may fail to patch C source code correctly, once patches be-
come more complex, i.e., if the location for changes differs in the
target [34]. However, it is unclear whether these observations gen-
eralize to patch scenarios in other projects, and whether other
patchers exhibit the same limitations or automation potential.

RQ2: How effective is mpatch in comparison to existing
language-agnostic patchers?

As a result of RQ1, we observe that existing patchers frequently
fail to identify the correct location to apply a change. By manu-
ally inspecting failing cases, we find that matching the source and
target of a patch application might solve most of the encountered
problems. Consequently, we developed mpatch (cf. Section 3), a
novel language-agnostic patcher that relies on a matching.

RQ3:What is the potential impact of improving language-
agnostic patching with mpatch?

To assess the significance of patching in practice and to gauge the
impact of mpatch’s potential improvement over existing patchers,
we study to which extent patching is a relevant software main-
tenance activity in practice. Specifically, patching may be more
prevalent in certain types of communities or repositories (e.g., de-
pending on the main programming language), which then would
also be more heavily burdened by failing patches.

4.1 Data Collection
To answer our research questions, we collected a dataset of patching
scenarios, specifically cherry picks (i.e., patches applied with Git
cherry-pick), mined from public repositories. First, we curated a
set of 5,000 public projects from GitHub. We selected the ten most
popular project languages on GitHub in the first quarter of 2024
by means of their number of stars. We identified the most popular
languages based on the language overview of the GitHut project [4].

The most popular languages on GitHub were: Python, JavaScript,
Go, C++, Java, TypeScript, C, C#, PHP, and Rust. Next, we collected
500 projects from the most popular projects for each language using
GitHub’s REST API: We filtered projects by language and sorted
them by their number of stars in descending order, then selecting the
top results. To identify a project’s (programming) language, GitHub
selects the language of the majority of artifacts in the repository,
though some project artifacts are often written in another language
(e.g., shell scripts, configuration files, documentation, or build files).

Within our dataset, we identified cherry picks among all commits
and branches of the projects. While Git provides a dedicated Git
cherry command that is meant to find cherry picks by comparing
the diffs of commits, this command does not work for cases in
which the patch performed by a cherry pick differs in the source
and target – which are exactly the cases that are interesting to us.
Fortunately, when users can configure Git cherry-pick to append a
line to the commit message that states “(cherry picked from commit
<id>)” using the “-x” flag. To identify cherry picks, we parse the
commit messages of all commits in a repository, searching for
instances of such a line. Using the specified <id> of the commit, we
can then retrieve the commit. In a few repositories that rewrote their
Git histories (using Git rebase), we could not find some picked
commits and thus could not include them into our evaluation.

4.2 Evaluation of Patcher Effectiveness
4.2.1 Considered Patchers. We consider GNU patch, Git apply, and
Git cherry-pick as state-of-the-art for language-agnostic patching (cf.
Section 2.2). We use the default configurations for GNU patch, and
Git cherry-pick because they are likely the most-used configurations
in practice. To not discriminate against Git apply in our evaluation,
we invoke it with the reject flag (cf. Section 2.2.2), which simulates
a reject behavior similar to GNU patch, instead of aborting patching.

4.2.2 Sampling of Patch Scenarios. Due to the large size of our
dataset with more than 400,000 cherry picks (cf. Table 2), we focus
our analysis on patch scenarios for which we expect differences
between patching techniques. To this end, we classify cherry picks
into the classes ‘trivial’ and ‘complex’. We classify a patch as trivial
iff the diff between the source and changed source and the diff
between the target and patched target (cf. Figure 1) are identical,
down to each line number and whitespace. Trivial cherry picks do
not require adjustments when being applied to the target version,
and can be applied solely based on the line numbers of changes.
In fact, for trivial patches, we observed that all patchers, including
mpatch, performed perfectly in essentially all cases, with only rare
cases causing issues (e.g., intentionally broken character encod-
ings in files). Hence, a new patching technique cannot improve
the outcome for trivial patches. We discard trivial patches from
further analysis, and instead focus on the remaining 101,196 (23.6%)
complex patches to answer our research questions.

4.2.3 Automated Application of Patchers. To assess the effective-
ness of a patcher, we replay each patch scenario in our dataset. As
illustrated in Figure 1, a patch scenario consists of

• a patch that we extract from the diff of source A1 and
changed source A2 (i.e., the cherry),

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Overview of patch outcome classification

Change
Type Applied? Location

Correct?
#Observed
Differences Patch Outcome Class

Required ✓ ✓ 0 correct TP
Required ✓ × 2 wrong location FP & FN
Required × N/A 1 missing FN

Undesired ✓ N/A 1 invalid FP
Undesired × N/A 0 filtered/rejected TN

• a target version B1 , that is the commit upon which the Git
cherry-pick command was originally applied,

• and the expected patched target B2 , which corresponds to
the commit after the cherry pick, i.e., the ground truth.

To replay a patch scenario, we generate source, cherry, and target
versions of the patch scenario, and we invoke a patcher with its
command line interface. We then compare the patch outcome to
the expected patched target (see Section 4.2.4).

An additional step is required for Git cherry-pick. In contrast to
the other patchers, Git cherry-pick does not directly reject changes
but instead reports merge conflicts (cf. Section 2.2.3) that are written
directly into the file. To appropriately compareGit cherry-pick to the
other patchers, we thus had to handle its conflicts. For comparability,
we choose an approach that resembles the behavior of the other
patches as close as possible. Other patchers write their rejected
changes into a rejects file, instead of applying them. We mimicked
this behavior for Git cherry-pick by removing all Git-markers and
the theirs versions from a file after Git cherry-pick finished. For
conflicting locations, this left only the original content (the ours
version), effectively simulating a rejection of conflicting hunks.

4.2.4 Classification of Patch Outcomes. All our patch scenarios
stem from real-world version histories. Thus, we can determine
whether a patch has been applied correctly by comparing the re-
sult with how developers committed a patch application in their
project’s history. First, we compare the patched target version with
the expected patch outcome using Unix diff, where we treat miss-
ing files as empty and ignore trailing whitespace, as it rarely carries
important information. According to the observed differences in the
patched target, we then classify the changes in a patch as exactly
one of the five classes shown in Table 1. The classes distinguish
required changes that must be applied by a patcher, and undesired
changes that must not be applied and hence rejected (first column).
For required changes, there are three cases that may occur (second
to last column): the change has been applied to the correct loca-
tion (correct), the change has been applied to an incorrect location
(wrong location), and the change has not been applied (missing). For
undesired changes, we also distinguish between a change having
been applied (invalid) anywhere, and a change not having been
applied (filtered/rejected).

Using this methodology, we focus only on the patch application
itself, effectively ignoring differences that are not directly related
to the content of the patch. We ignore these differences because the
evaluated language-agnostic patchers focus on applying patches,
and do not alter the target in any other way. Furthermore, we only
consider text files in our evaluation – excluding binary files which

are difficult to evaluate: A small edit in a binary file can be just as
problematic as a large one, and a diff cannot effectively represent
differences in binary files.

4.2.5 Evaluation Metrics. We measure effectiveness of patchers in
terms of five different metrics.

Patch Automation Percentage and Required Fixes. These metrics
reflect the manual effort of developers when patching. The automa-
tion percentage measures how often a patcher is able to apply a
patch without human intervention. We determine the patch au-
tomation percentage as the ratio of the number of patches with
100% precision and recall (i.e., no fixes needed), and the total num-
ber of patches. We also measure the average number of fixes that
are required after a patch application by counting the number of
lines that have to be changed to correct the artifact.

Precision, Recall, and F1-Score. We measure precision and recall
because they reflect whether required changes are correctly ap-
plied and whether undesired changes were rejected, and F1-Score
as it reflects the trade-off between precision and recall. To deter-
mine precision and recall, we consider patchers as classifiers for
changes [34] that determine whether a change is required or unde-
sired, with required changes being positive and undesired changes
negative instances. Thus, for required changes, we count correctly
applied changes as true positive (TP), and rejected changes as false
negatives (FN) (cf. Table 1). For undesired changes, we count ap-
plied changes as false positive (FP), and not-applied changes as true
negative (TN). Required changes that were applied to the wrong
location represent a special case because they cause an undesired
change (at the wrong location) and a missing change (at the correct
location); we counted them as both FP and FN, which reflects the
additional effort of developers in such cases.

Precision is the ratio of correctly applied required changes among
all applied changes, which is given by 𝑇𝑃

𝑇𝑃+𝐹𝑃 , while recall is the
ratio of required changes that were applied correctly, which is given
by 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Lastly, the F1-Score is given by 2·precision·recall
precision+recall .

5 Results
5.1 Overview of Mined Cherry Picks
In Table 2, we present an overview of our gathered dataset with
which we examine the prominence of patching in open source de-
velopment. In total, we mined cherry-picks from 5,000 repositories
(500 from each of the 10 most popular languages on GitHub). While
in 4,304 projects we cannot find cherry picks with our commit mes-
sage analysis, we still find a total of 423,717 cherry picks spread
across 696 repositories. The column ‘cherry pick [%]‘ denotes the
cherry-pick-to-commit ratio; i.e., how many percent of the com-
mits are cherry picks. Next, the column ‘complex cherry pick [%]‘
indicates the percentage of cherry picks that are complex, meaning
the source and target do not match perfectly. The complex cherry
picks represent the patching scenarios we studied for RQs 1 and 2.

Language-wise, we observe notable differences, specifically in
the absolute and relative occurrence of cherry picks. The projects
implemented mainly in C and C++ encompass half of all identified
cherry picks in absolute numbers whereas JavaScript projects use
them least frequently in absolute and relative numbers. Conversely,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Decades of GNU Patch and Git Cherry-Pick: Can We Do Better? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Overview of our collection of GitHub projects.

main
repository
language

#sampled
projects

#projects
w. cherry
picks

#cherry
picks

cherry
pick [%]

complex
cherry
pick [%]

C 500 74 108,595 1.292 19.1
C# 500 61 6,929 0.334 22.1
C++ 500 112 108,085 1.437 31.8
Go 500 98 28,941 1.234 28.6
Java 500 91 81,859 2.232 20.6
JavaScript 500 43 3,243 0.187 22.4
PHP 500 54 22,593 0.830 13.2
Python 500 57 33,152 1.130 27.1
Rust 500 39 7,033 0.329 31.9
TypeScript 500 67 23,287 0.728 19.2

total 5,000 696 423,717 1.153 23.9

Java projects exhibit the highest cherry-pick-to-commit ratio on
average: more than every 50th commit is a cherry pick. Moreover,
we observe differences regarding the ratio of complex cherry picks
among the identified cherry picks. Projects implemented in PHP
exhibit the lowest ratio of complex cherry picks (on average: 13.2%),
while C++ and Rust projects have the highest ratio with averages of
31.8% and 31.9%, respectively. The average ratio of complex cherry
picks across all projects is 23.9%. Thus, almost every fourth cherry
pick requires target-specific adjustments (e.g., applying changes to
locations different from the source).

5.2 Evaluation of Patchers on our Dataset
To answer RQs 1 and 2, we studied the patchers introduced in Sec-
tion 2.2 and mpatch on our dataset. Table 3 presents the key results
of our evaluation. For each patcher, we measured precision, recall,
automation degree, the number of required fixes for a failed patch,
and its execution time (cf. Section 4.2.5). Values highlighted in bold
font perform best for each metric and project language. The right-
most columns present the mean (𝑥) over all languages, the relative
difference of these means of the patchers compared tompatch (±%),
and the effect size |𝑟𝑅𝐵 |, computed with the rank-biserial correla-
tion [9]. To test the null hypothesis whether the results of mpatch
or of another patcher stem from the same distribution, we used the
Wilcoxon signed-rank test [43]. In all cases, the hypothesis got re-
jected with 𝑝 ≪ 0.01. This shows thatmpatch behaves significantly
different than the other patchers for all metrics measured.

Next, we describe the results presented in Table 3 in detail, dis-
cussing the metrics and analyzing language-specific results.
Patch Automation Percentage: mpatch achieves the greatest automa-
tion percentage across all project languages and is able to correctly
apply 59% of complex patches automatically, on average. In com-
parison, GNU patch correctly applies 40% of patches, Git apply 16%,
and Git cherry-pick 41%.
Required Fixes: The number of lines that must be fixed by developers
after patching shows variance between project languages, with
patches in PHP projects requiring the fewest fixes and patches in
C# projects requiring the most. mpatch performs best across all
project languages with 18 fixes needed on average. Current patchers
require noticeable more fixes on average, ranging from 26 fixes (Git

cherry-pick) to 46 fixes (Git apply). On average, current patchers
require 47% to 155% more manual fixes after being used.
F1-Score: mpatch achieves the best F1-score across all project lan-
guages with an average of 0.95, and therefore the best trade-off
between precision and recall. In comparison, GNU patch and Git
cherry-pick achieve an F1-score of 0.9 and Git apply performs the
worst with an average F1-score of 0.84.
Precision: All patchers exhibit high precision (> 0.9), with Git apply
showing the highest precision for every project language. mpatch
performs (slightly) worse than current patchers, which achieve a
1.5% to 2.7% higher precision at the cost of reduced recall.
Recall: On average, GNU patch and Git cherry-pick achieve recalls
of 0.80 and 0.83, respectively; Git apply performs the worst with
a recall of 0.66. In contrast, mpatch achieves an average recall of
0.96 and it outperforms the remaining patchers across all project
languages. On average, we observe that the best current patcher,
Git cherry-pick, has a 13.44% lower recall than mpatch.

Language-wise, we observe some variance; e.g., all patchers have
lower precision and recall for C# projects. Similarly for automation
level, we observe the worst performance across all patchers for
C#. Moreover, we find that patch scenarios in PHP projects require
fewer fixes than scenarios in other project languages. The number
of required fixes varies largely w.r.t. the project languages and
patchers; e.g., for JavaScript, patches applied by mpatch need one-
tenth of the fixes compared to the remaining patchers.

In terms of execution time, we observed no outstanding behavior
as all patchers needmuch less than one second per patch on average.

All in all, mpatch considerably improves the degree of automa-
tion, the number of required fixes, and the recall in comparison to
current patchers, at the cost of a small reduction in precision.

5.3 Impact on Frequently Patched Projects.
For RQ3, we compare the performance of mpatch to the currently
best-performing patcher Git cherry-pick in the five projects with
the highest number of cherry picks. Table 4 presents the result
of this comparison. The ratio of cherry picks to commits (‘cherry
pick [%]’) shows that the projects utilize cherry picking very dif-
ferently. Some projects mostly commit trivial cherry picks for
which we do not expect differences between the patchers. For in-
stance, ‘intellij-community’ features only 859 complex cherry picks
out of 12,998 cherry picks in total. Next, the table presents the
amount of required fixes on average per complex patch (columns
‘required fixes <tool>’). We can then calculate the total number
of required manual fixes in a project; e.g., for ‘ceph’ this would
be 30.8 fixes

complex cherry pick ·7,758 complex cherry picks = 238,946 fixes
for Git cherry-pick and 18.0 · 7,758 = 139,644 for mpatch. The last
two columns show the automation percentage, which represents
the percentage of patches that were applied correctly by a patcher.

6 Discussion
6.1 Answers to Our Research Questions

RQ1: Effectiveness of current general-purpose patchers. In our
evaluation of current patchers,Git cherry-pick performed best. Com-
pared to GNU patch, it also has the advantage that it is integrated
directly into a version control system. This saves manual effort to
commit changes, especially for trivial patches that can be applied

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Comparison of the considered patchers for various project languages.

Project Languages
Metric Patcher Python JavaS. Go C++ Java TypeS. C C# PHP Rust 𝑥 ±% |𝑟𝑅𝐵 |

Autom. (%)

mpatch 59.93 62.09 61.78 53.26 59.92 57.93 66.04 49.50 56.47 50.07 59.11
GNU patch 44.18 39.25 35.38 36.64 40.09 40.62 45.30 33.74 45.77 34.75 40.29 −31.83% 0.37
Git apply 24.22 14.65 13.85 16.38 11.72 20.14 12.94 15.30 26.81 16.56 15.78 −73.30% 0.77
Git cp 42.03 36.73 48.85 37.08 38.78 42.28 44.18 33.81 44.64 36.17 41.00 −30.65% 0.36

Req. Fixes

mpatch 11.53 8.78 27.03 23.50 8.90 12.04 18.91 69.59 5.06 10.82 17.92
GNU patch 37.17 90.74 53.66 51.95 33.38 35.43 30.39 136.17 15.56 37.45 41.57 132.03% 0.37
Git apply 40.22 93.60 58.14 56.39 38.59 38.46 33.84 139.19 17.70 44.57 45.69 154.94% 0.57
Git cp 23.48 81.85 35.99 30.87 22.39 20.92 19.87 72.35 10.19 26.77 26.34 46.94% 0.32

F1 Score

mpatch 0.94 0.95 0.96 0.94 0.96 0.96 0.95 0.93 0.93 0.96 0.95
GNU patch 0.89 0.88 0.92 0.87 0.92 0.91 0.90 0.86 0.90 0.90 0.90 −5.49% 0.35
Git apply 0.84 0.82 0.88 0.82 0.86 0.88 0.81 0.82 0.87 0.86 0.84 −11.36% 0.59
Git cp 0.90 0.90 0.93 0.89 0.92 0.93 0.90 0.88 0.90 0.92 0.90 −4.70% 0.33

Precision

mpatch 0.94 0.92 0.96 0.92 0.96 0.95 0.94 0.91 0.90 0.95 0.94
GNU patch 0.96 0.93 0.97 0.93 0.97 0.97 0.95 0.93 0.92 0.96 0.95 1.53% 0.19
Git apply 0.97 0.98 0.98 0.95 0.98 0.98 0.96 0.96 0.92 0.97 0.96 2.68% 0.32
Git cp 0.95 0.95 0.97 0.94 0.97 0.97 0.95 0.94 0.91 0.96 0.95 1.55% 0.18

Recall

mpatch 0.95 0.94 0.97 0.96 0.97 0.96 0.96 0.92 0.98 0.97 0.96
GNU patch 0.81 0.75 0.84 0.77 0.84 0.80 0.77 0.76 0.87 0.84 0.80 −16.78% 0.70
Git apply 0.70 0.59 0.75 0.64 0.70 0.71 0.55 0.62 0.77 0.74 0.66 −31.76% 0.86
Git cp 0.84 0.77 0.88 0.81 0.85 0.85 0.80 0.78 0.89 0.87 0.83 −13.44% 0.66

Table 4: Comparison of automation potential of mpatch and
Git cherry-pick in projects with the most cherry picks.

repository cherry
pick [%]

#cherry
picks

#complex
cherry
picks

#required
fixes
Git cp

#required
fixes

mpatch

fully
autom.
Git cp

fully
autom.
mpatch

IntelliJ 2.45 12,998 859 6.8 3.0 56.7% 66.0%
Hadoop 21.02 14,553 3,618 15.6 5.0 34.2% 62.0%
FreeBSD 2.31 21,266 3,316 8.3 4.3 42.3% 67.0%
FFmpeg 17.99 23,774 3,829 3.3 1.2 55.0% 76.4%
ceph 22.01 32,651 7,758 30.8 18.0 36.0% 59.3%

without fixes. However, it comes at the price of Git cherry-pick be-
ing less applicable, specifically to Git projects only. For instance, it
is difficult to create a patch and transfer it to another project. More-
over, Git cherry-pick does not outperform GNU patch by a great
margin as its merge-based strategy is susceptible to any change
in the context being reported as conflict. In our evaluation, we
inspected several patches manually, to understand the workflow of
patchers and their strengths and weaknesses. We observed cases in
which Git cherry-pick reported extremely complex merge conflicts,
even if the patch only contained one or two changes. For example,
the cherry pick applied as commit 0539294 in the project moby
changed a single line in the target, but upon replaying, Git reports a
merge conflict spanning several hundred lines. Such extreme cases
highlight the limitations of the merge-based strategy.

In general, current patchers achieve high precision but fall short
in the recall and patch automation rates. Overall, less than half of
the patches can be automatically applied with current patchers. In

terms of recall and automation, Git apply performed much worse
than GNU patch and Git cherry-pick. This is likely due to its strict
rejection heuristic: any difference in the target’s context leads to
a rejection (cf. Section 2.2.2). Interestingly, this behavior only in-
creases precision marginally. By comparing the results of Git apply
and GNU patch, we find that a partially common context is a reliable
indicator that a change is required as GNU patch achieves a much
higher recall with its more relaxed context-based strategy.

RQ1: Git cherry-pick is the most effective current patcher, when
Git histories are available. While current patchers can identify
undesired changes reliably, they often reject required changes or
apply them at wrong locations. To increase automation, new patch
tools should improve recall as this promises better overall results.

RQ2: Effectiveness of mpatch. Our results show that mpatch per-
forms consistently better than current patchers across all project
languages. Specifically, the automation percentage and number of
requires fixes are improved considerably: mpatch can apply 44%
more patches correctly than Git cherry-pick (i.e., automation per-
centages of 59% vs. 41%), and mpatch requires 8.4 fewer fixes per
patch on average. We observe a similar improvement for the Top-5
projects with the highest number of patches (cf. Table 4).

The improvement in automation percentage and required fixes is
also reflected by an improved F1-score, which represents the trade-
off between precision and recall. While the precision of mpatch is
(slightly) lower across all project languages, its recall is consider-
ably higher. This is most likely due to its match-based approach
being able to identify the correct locations for required changes

8

https://github.com/JetBrains/intellij-community
https://github.com/apache/hadoop
https://github.com/freebsd/freebsd-src
https://github.com/FFmpeg/FFmpeg
https://github.com/ceph/ceph
https://github.com/moby/moby/commit/053929465227ce5d123f623c116651707d217b24
https://github.com/moby/moby/

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Decades of GNU Patch and Git Cherry-Pick: Can We Do Better? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

more often than a context-based approach. By matching entire files,
mpatch applies fewer changes to similar, but incorrect locations
and rejects fewer (required) changes for which the context differs
between the source and the target.

Overall, our prototypical implementation ofmpatch outperforms
all tested patchers, including Git cherry-pick, despite biases in favor
of Git cherry-pick (cf. Section 6.2) on real-world open-source patch
scenarios. Thus, our prototype improves the state-of-the-art and
may be used right away.

RQ2: Our evaluation presents strong empirical evidence that mpatch
outperforms current language-agnostic patchers on a wide spectrum
of patch scenarios. Using mpatch, practicioners could on average
apply 44% more patches automatically, requiring no manual fixing,
than the best current language-agnostic patcher.

RQ3: Potential impact of improving language-agnostic patching
with mpatch. Finding thatmpatch improves patching for individual
patching scenarios, we also gauge its potential impact for devel-
opers, in general. To this end, we first consider the prominence of
patching in public repositories, and second, the heavy reliance of
some projects on patching.

While mining cherry picks from repositories, we were only able
to identify cherry picks in 696 out of 5,000, but we may have missed
patches that were applied with other tools than Git cherry-pick. As
we only selected cherry picks with dedicated, optionally-generated
commit messages (cf. Section 4.1), it is likely that we missed an
unknown number of cherry picks without this message, and patch
scenarios that were createdwith other patchers ormanual copy-and-
pasting. Despite this limitation, we were able to identify about 423k
patches, with about 101k of them being complex. This corresponds
to about 144 complex cherry picks per project with cherry picks. Of
these 101k complex patches, mpatch is able to automatically apply
about 17k more patches than the best current patcher. For each of
these patches, manual effort is saved in addition to requiring fewer
fixes in most cases.

We also investigated the potential impact ofmpatch in the Top-5
projects with the highest number of cherry picks (cf. Table 4). Here,
we observe that patching is a central aspect for three of these five
projects, as more than 17% of all commits in their history were
patched (i.e., cherry picked). For these projects, mpatch could lead
to a substantial reduction in manual effort that is caused by fixing
patches. The most extreme case we found is in ceph: 22% of their
commits are patches. In ceph, mpatch could have applied 1,800
more patches automatically than Git cherry-pick, while requiring
only half the number of fixes.

RQ3: Our evaluation shows that mpatch could have a large pos-
itive impact on patching in many different projects and domains,
especially projects that heavily utilize patching.

6.2 Threats to Validity
Internal Validity. As with any software, bugs in our evaluation

setup might lead to incorrect conclusions. To ensure the correctness
of mpatch, we implemented unit and integration tests that check
its match, filter, and apply phase in various patching scenarios.
Whenever applicable, we also integrated implementations of trusted

libraries into our prototype, e.g., for the LCS matcher. We further
reviewed edge cases and anomalies to double-check our complete
evaluation work flow.

In our evaluation we calculate various metrics that are influenced
by the outcomes of Unix diff; we use it to assess the difference
of the expected patch target and the achieved patch target. Such
a diff is intrinsically heuristic, i.e., there are many different but
valid diffs of two files. GNU patch, Git apply, and our mpatch use a
diff as input, and thus may be biased by this. However, most other
patchers are either also based on Unix diff or a derivate of it.

All patch scenarios in our evaluation were originally performed
using Git cherry-pick, which introduces two biases in its favor. First,
Git cherry-pick’s patch results are often more similar to our evalu-
ation’s ground truth, because it was derived from Git cherry-pick:
each of our patch scenarios is the result of a developer using Git
cherry-pick, and then fixing its result, i.e., resolving merge conflicts.
In each patch scenario, a developer thus started to resolve conflicts
after they were presented the Git cherry-pick results of our eval-
uation. Second, our dataset may miss cases where Git cherry-pick
performed exceptionally poor. Such cases could be either Git cherry-
pick crashing or creating too many merge conflicts to be managable.
Instead of attempting to deal with these scenarios and commit their
result, these scenarios may have just been skipped or handled with
another tool. It is thus noteable that mpatch still performed better
than Git cherry-pick.

We evaluated all patchers in their default configuration. Each
patcher offers various fine-tuning options for specific tasks, and
using these configurations may yield different outcomes. However,
we chose to evaluate only the most straightforward, and likely most
commonly used default configurations. We argue that this approach
provides a good impression of a patcher’s effectiveness.

External Validity. Our dataset is limited to public projects on
GitHub and our observations thus might not be generalizable to
closed-source projects. However, many professional developers
participate in projects on GitHub and our dataset of diverse projects
should cover many different programming practices. Similarly, our
results may not generalize to less popular projects. However, a
better patching tool would have a less impact for these, anyway.

In our evaluation, we only consider patch scenarios that stem
from cherry picks and thus Git cherry-pick. Currently, our knowl-
edge of patch scenarios from other tools is severely limited, and
we have no reliable way of collecting them, automatically. How-
ever, our dataset of patches is huge and covers various domains,
broadening our knowledge at least for cherry picks in open source.

7 Related Work
7.1 Techniques Related to Patching

Language-specific Patching. Almost all language-specific patch-
ers were designed for patch backporting. Patch backporting creates
a patch from changes applied to a newer version of a program
and transforms this patch to fit an older version. Most backporting
techniques focus on backporting patches for the Linux kernel [34],
some specialize on Linux device drivers only [31, 37], while others
are applicable for code of a specific language, e.g., C code [34, 44] or

9

https://github.com/ceph/ceph
https://github.com/ceph/ceph

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

PHP [35]. Harnessing the syntax, semantics, control flow or depen-
dencies of their application domain, they (e.g., FixMorph [34] and
TSBPORT [44]) likely outperform language-agnostic patchers. How-
ever, this effectiveness comes at the price of limited applicability,
specifically to the chosen file types and languages. We consider a di-
rect comparison with language-specific patching out of the scope of
this paper as backporting techniques are complementary tompatch:
Whilempatch can be used for language-agnostic patching spanning
hundreds of different languages and file types, language-specific
patchers could be preferred for their specialized use cases focusing
changes to files written in supported languages.

LLM-based patching. Recently, Pan et al. [28] proposed the first
LLM-based patching approach called 𝑃𝑃𝐴𝑇𝐻𝐹 for applying patches
between hard project forks. By using an LLM, their approach is in
principle language-agnostic. However, it was specifically designed
for the patching of functions (aka. procedures), and was only evalu-
ated on patches to C functions in (Neo)vim. Thus, it is unclear how
the applicability of their approach generalizes to other program-
ming languages and whether it can be used for other artifacts (e.g.,
configuration files, or documentation) and larger patches.

Patching in Variant-Rich Systems. Prior work investigated the
potential to automate patching for clone-and-own variants (i.e.,
diverged versions) [32]. They simulated diverging versions of the
Unix suite BusyBox and observed that GNU patch achieved a high
precision and recall of 0.92 and 0.93. While we report a similar pre-
cision for GNU patch, we found that its recall does not generalize
to patch scenarios in public projects, where is presented an aver-
age recall of only 0.80. Research on patch propagation [26], patch
mutation [5], patch filtering [17], or differencing [6] for config-
urable software (i.e., software product lines) assumes the existence
of explicit documentation on (1) the available software versions or
variants, and (2) the relation of source code to configuration options
(e.g., via C preprocessor annotations). Techniques that rely on an
integrated platform [1, 2, 2, 11, 19–22, 33, 36, 41] propagate changes
to software variants automatically but require a single representa-
tion of all software variants similar to software product lines. While
such methods are effective when explicit knowledge on variability
is present, they are neither applicable as language-agnostic patchers
nor account for cases without this explicit knowledge.

7.2 Studies on Patching Practices
Businge et al. [7] conducted a study on patching between forks in
Android, .NET, and JavaScript systems. They found that the rate of
patching between forks is overall low and that most patches are ap-
plied to forks as pull requests (i.e., merges). They also investigated
patching between two forks and observed that Git cherry-pick is
seldom used (9% of Android, 0.9% of .NET, and 2.5% of JavaScript).
In contrast, we found cherry-picks in about 14% of the projects in
our dataset. We suspect that this discrepancy is due to their more
conservative method of considering only trivial cherry-picks. Ramk-
isoen et al. [30] investigated the “patch technical lag” in divergent
forks: They found that it takes 27 weeks on average until a bug fix
is propagated to a fork that requires it. Jang et al. [13] investigated
vulnerability patching over time. They found that the majority
of clones remain unpatched after one year, and that some clones

remain unpatched even longer. All of these empirical findings sug-
gest a need for better tool support that helps with identifying and
applying patches. Li et al. [18] investigated patch porting strate-
gies among different Linux distributions. They found a variety of
porting strategies and that patch porting appears to be a trade-off
between introducing too many patch-related bugs and missing too
many important patches. Regarding the complexity of patching,
Shariffdeen et al. [34] investigated the typical number of patches
that are backported and the time required to backport them. They
found that many patches are backported to Linux kernel versions
(about 8% per Linux version) and that backporting requires more
than 20 days for 80% of patches. Furthermore, when analyzing
patches they observed that only 23% of backported patches were
trivial. This suggests that patch backporting is more complex than
patching in general, as we observed that more than 75% of patches
in our dataset were trivial.

8 Conclusion
In this paper, we investigated the prominence of patching in public
repositories and the effectiveness of patchers in complex patch
scenarios. In complex scenarios, the source and target version of a
patch diverged and exhibit differences that patchers have to han-
dle. For these, we observed that patchers apply patches with high
precision, but low recall as current patchers struggle to identify
the correct change locations. This causes an overall low rate of
automation of only 16% to 41% of the investigated patch scenarios.

To address these shortcomings, we introduced mpatch, a novel
language-agnostic patching technique with a match-based strategy.
mpatch achieves a considerably higher automation rate than the
best current patcher in the studied patch scenarios, and can apply
44% more patches automatically without mistakes. We investigated
the potential impact of mpatch on patching in practice. To this end,
wemined a dataset of over 400,000 scenarios from 5,000 open source
repositories on GitHub, of which over 100,000 were identified as
complex. Of these complex scenarios, mpatch can correctly and
automatically apply 17k patches more than the best current patcher.
This directly impacts projects that heavily rely on patching, such
as ceph, in which we found more than 7,000 complex patches, of
which mpatch applies 1,800 more patches automatically.

In conclusion, our work shows that language-agnostic patching
is a challenging problem in software maintenance and evolution.
Particularly, when the source and target of a patch diverge, cur-
rent language-agnostic patchers fall short. Consequently, our work
paves the way for more efficient maintenance and evolution of
complex software projects, for instance, by integrating mpatch into
version control systems. Additionally, our large dataset of complex
patches can be used to evaluate the effectiveness of novel patching
techniques, or to study patching practices in public repositories.
Finally, our design and implementation of a match-based patcher
demonstrated superior effectiveness compared to a family of tools
that have evolved and matured over almost 40 years. This under-
scores the importance of re-evaluating even the most established
methods and techniques in our more than vibrant research area of
software engineering.

10

https://github.com/ceph/ceph

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Decades of GNU Patch and Git Cherry-Pick: Can We Do Better? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

References
[1] Sofia Ananieva, Sandra Greiner, Timo Kehrer, Jacob Krüger, Thomas Kühn, Lukas

Linsbauer, Sten Grüner, Anne Koziolek, Henrik Lönn, S. Ramesh, and Ralf H.
Reussner. 2022. A Conceptual Model for Unifying Variability in Space and
Time: Rationale, Validation, and Illustrative Applications. Empirical Software
Engineering (EMSE) 27, 5 (2022), 101. doi:10.1007/s10664-021-10097-z

[2] Sofia Ananieva, Thomas Kühn, and Ralf Reussner. 2022. Preserving Consistency
of Interrelated Models During View-Based Evolution of Variable Systems. In
Proc. Int’l Conf. on Generative Programming and Component Engineering (GPCE).
ACM, 148–163. doi:10.1145/3564719.3568685

[3] Anonymous Authors. 2024. The Reproduction Package of this Paper. Web-
site: https://anonymous.4open.science/r/patching-with-matching-eval-D610/
README.md.

[4] Fabian Beuke. 2024. GitHut 2.0 – A Small Place to Discover Languages in GitHub.
Website: https://madnight.github.io/githut/#/stars/2024/1. Accessed: 2024-06-01.

[5] Paul Maximilian Bittner, Alexander Schultheiß, Sandra Greiner, BenjaminMoosh-
err, Sebastian Krieter, Christof Tinnes, Timo Kehrer, and Thomas Thüm. 2023.
Views on Edits to Variational Software. In Proc. Int’l Systems and Software Product
Line Conf. (SPLC). ACM, 141–152. doi:10.1145/3579027.3608985

[6] PaulMaximilian Bittner, Alexander Schultheiß, BenjaminMoosherr, Timo Kehrer,
and Thomas Thüm. 2024. Variability-Aware Differencing with DiffDetective. In
Companion Proc. Int’l Conference on the Foundations of Software Engineering (FSE
Companion). ACM, 632–636. doi:10.1145/3663529.3663813

[7] John Businge, Moses Openja, Sarah Nadi, and Thorsten Berger. 2022. Reuse and
Maintenance Practices Among Divergent Forks in Three Software Ecosystems.
Empirical Software Engineering (EMSE) 27, 2 (2022), 54. doi:10.1007/S10664-021-
10078-2

[8] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software
Configuration Management. ACM Computing Surveys (CSUR) 30, 2 (1998), 232–
282. doi:10.1145/280277.280280

[9] Edward E Cureton. 1956. Rank-Biserial Correlation. Psychometrika 21, 3 (1956),
287–290.

[10] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey
Clemm, Walter Tichy, and Darcy Wiborg-Weber. 2005. Impact of Software
Engineering Research on the Practice of Software Configuration Management.
Trans. on Software Engineering and Methodology (TOSEM) 14, 4 (2005), 383–430.
doi:10.1145/1101815.1101817

[11] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander
Egyed. 2015. The ECCO Tool: Extraction and Composition for Clone-and-Own.
In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 665–668. doi:10.1109/
ICSE.2015.218

[12] Stack Exchange Inc. 2023. Beyond Git: The Other Version Control Systems
Developers Use. Website: https://stackoverflow.blog/2023/01/09/beyond-git-the-
other-version-control-systems-developers-use/. Accessed: 2024-07-01.

[13] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: Finding Un-
patched Code Clones in Entire OS Distributions. In Proc. IEEE Symposium on
Security and Privacy (SP). IEEE, 48–62. doi:10.1109/SP.2012.13

[14] Jesper Juhl. 2016. Applying Patches To The Linux Kernel. Website: https:
//www.kernel.org/doc/html/v4.11/process/applying-patches.html. Accessed:
2024-07-01.

[15] Timo Kehrer, Udo Kelter, Pit Pietsch, and Maik Schmidt. 2012. Adaptability of
Model Comparison Tools. In Proc. Int’l Conf. on Automated Software Engineering
(ASE). ACM, 306–309. doi:10.1145/2351676.2351731

[16] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2013. Consistency-Preserving
Edit Scripts in Model Versioning. In Proc. Int’l Conf. on Automated Software
Engineering (ASE). ACM, 191–201. doi:10.1109/ASE.2013.6693079

[17] Tobias Landsberg, Christian Dietrich, and Daniel Lohmann. 2024. Should I
Bother? Fast Patch Filtering for Statically-Configured Software Variants. In Proc.
Int’l Systems and Software Product Line Conf. (SPLC) (Dommeldange, Luxem-
bourg). ACM, New York, NY, USA, 12–23. doi:10.1145/3646548.3672585

[18] Xingyu Li, Zheng Zhang, Zhiyun Qian, Trent Jaeger, and Chengyu Song. 2024.
An Investigation of Patch Porting Practices of the Linux Kernel Ecosystem. In
Proc. Working Conf. on Mining Software Repositories (MSR) (Lisbon, Portugal).
ACM, New York, NY, USA, 63–74. doi:10.1145/3643991.3644902

[19] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification
of Variation Control Systems. In Proc. Int’l Conf. on Generative Programming:
Concepts & Experiences (GPCE). ACM, 49–62. doi:10.1145/3136040.3136054

[20] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2017.
Variability Extraction and Modeling for Product Variants. Software and Systems
Modeling (SoSyM) 16, 4 (2017), 1179–1199. doi:10.1007/s10270-015-0512-y

[21] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.
Concepts of Variation Control Systems. J. Systems and Software (JSS) 171 (2021),
110796. doi:10.1016/j.jss.2020.110796

[22] Wardah Mahmood, Daniel Strueber, Thorsten Berger, Ralf Laemmel, and Muke-
labai Mukelabai. 2021. Seamless Variability Management With the Virtual
Platform. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 1658–1670.
doi:10.1109/ICSE43902.2021.00147

[23] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Sydit: Creating and
Applying a Program Transformation From an Example. In Proc. Int’l Symposium
on Foundations of Software Engineering (FSE), Tibor Gyimóthy and Andreas Zeller
(Eds.). ACM, 440–443. doi:10.1145/2025113.2025185

[24] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic Editing:
Generating Program Transformations From an Example. In Proc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI). ACM, 329–
342. doi:10.1145/1993316.1993537

[25] Tom Mens. 2002. A State-of-the-Art Survey on Software Merging. IEEE Trans. on
Software Engineering (TSE) 28, 5 (2002), 449–462. doi:10.1109/TSE.2002.1000449

[26] Gabriela Karoline Michelon, Wesley K. G. Assunção, Paul Grünbacher, and
Alexander Egyed. 2023. Analysis and Propagation of Feature Revisions in
Preprocessor-based Software Product Lines. In Proc. Int’l Conf. on Software Analy-
sis, Evolution and Reengineering (SANER), Tao Zhang, Xin Xia, and Nicole Novielli
(Eds.). IEEE, 284–295. doi:10.1109/SANER56733.2023.00035

[27] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its Variations.
Algorithmica 1, 2 (1986), 251–266. doi:10.1007/BF01840446

[28] Shengyi Pan, You Wang, Zhongxin Liu, Xing Hu, Xin Xia, and Shanping Li. 2024.
Automating Zero-Shot Patch Porting for Hard Forks. In Proc. Int’l Symposium
on Software Testing and Analysis (ISSTA), Maria Christakis and Michael Pradel
(Eds.). ACM, New York, NY, USA, 363–375. doi:10.1145/3650212.3652134

[29] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. 2004. Version
Control With Subversion. O’Reilly Media, Inc.

[30] Poedjadevie Kadjel Ramkisoen, John Businge, Brent van Bladel, Alexandre Decan,
Serge Demeyer, Coen De Roover, and Foutse Khomh. 2022. PaReco: Patched
Clones and Missed Patches Among the Divergent Variants of a Software Family.
In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, 646–658. doi:10.1145/3540250.3549112

[31] Luis R. Rodriguez and Julia Lawall. 2015. Increasing Automation in the Back-
porting of Linux Drivers Using Coccinelle. In Proc. Europ. Dependable Computing
Conf. (EDCC). IEEE, 132–143. doi:10.1109/EDCC.2015.23

[32] Alexander Schultheiß, Paul Maximilian Bittner, Thomas Thüm, and Timo Kehrer.
2022. Quantifying the Potential to Automate the Synchronization of Variants
in Clone-and-Own. In Proc. Int’l Conf. on Software Maintenance and Evolution
(ICSME). IEEE, 269–280. doi:10.1109/ICSME55016.2022.00032

[33] Felix Schwägerl and Bernhard Westfechtel. 2016. SuperMod: Tool Support
for Collaborative Filtered Model-Driven Software Product Line Engineering.
In Proc. Int’l Conf. on Automated Software Engineering (ASE). ACM, 822–827.
doi:10.1145/2970276.2970288

[34] Ridwan Shariffdeen, XiangGao, Gregory J. Duck, ShinHwei Tan, Julia Lawall, and
Abhik Roychoudhury. 2021. Automated Patch Backporting in Linux (Experience
Paper). In Proc. Int’l Symposium on Software Testing and Analysis (ISSTA). ACM,
633–645. doi:10.1145/3460319.3464821

[35] Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, Yinzhi Cao, Ziwen Wang,
Yudi Zhao, Zongan Huang, and Min Yang. 2022. Backporting Security Patches of
Web Applications: A Prototype Design and Implementation on Injection Vulner-
ability Patches. In Proc. USENIX Security Symposium (USS). USENIX Association,
1993–2010.

[36] Stefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wąsowski.
2016. Concepts, Operations, and Feasibility of a Projection-Based Variation Con-
trol System. In Proc. Int’l Conf. on Software Maintenance and Evolution (ICSME).
IEEE, 323–333. doi:10.1109/ICSME.2016.88

[37] Ferdian Thung, Xuan-Bach Dinh Le, David Lo, and Julia Lawall. 2016. Recom-
mending Code Changes for Automatic Backporting of Linux Device Drivers. In
Proc. Int’l Conf. on Software Maintenance and Evolution (ICSME). IEEE, 222–232.
doi:10.1109/ICSME.2016.71

[38] Walter F. Tichy. 1982. Design, Implementation, and Evaluation of a Revision
Control System. In Proc. Int’l Conf. on Software Engineering (ICSE). IEEE, 58–67.

[39] Linus Torvalds, Junio C Hamano, et al. 2023. git-apply. Website: https://git-
scm.com/docs/git-apply. Accessed: 2024-07-01.

[40] Linus Torvalds, Junio C Hamano, et al. 2023. git-cherry-pick. Website: https:
//git-scm.com/docs/git-cherry-pick. Accessed: 2024-07-01.

[41] EricWalkingshaw and Klaus Ostermann. 2014. Projectional Editing of Variational
Software. In Proc. Int’l Conf. on Generative Programming: Concepts & Experiences
(GPCE). ACM, 29–38. doi:10.1145/2658761.2658766

[42] Larry Wall, Paul Eggert, Wayne Davison, David MacKenzie, and Andreas Grün-
bacher. 2009. GNU patch. Website: https://savannah.gnu.org/projects/patch/.
Accessed: 2024-07-01.

[43] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. doi:10.2307/3001968

[44] Su Yang, Yang Xiao, Zhengzi Xu, Chengyi Sun, Chen Ji, and Yuqing Zhang.
2023. Enhancing OSS Patch Backporting with Semantics. In Proc. SIGSAC
Conf. on Computer and Communications Security (CCS), Weizhi Meng, Chris-
tian Damsgaard Jensen, Cas Cremers, and Engin Kirda (Eds.). ACM, 2366–2380.
doi:10.1145/3576915.3623188

Received XX XX XXXX; revised XX XX XXXX; accepted XX XX XXXX

11

https://doi.org/10.1007/s10664-021-10097-z
https://doi.org/10.1145/3564719.3568685
https://anonymous.4open.science/r/patching-with-matching-eval-D610/README.md
https://anonymous.4open.science/r/patching-with-matching-eval-D610/README.md
https://madnight.github.io/githut/#/stars/2024/1
https://doi.org/10.1145/3579027.3608985
https://doi.org/10.1145/3663529.3663813
https://doi.org/10.1007/S10664-021-10078-2
https://doi.org/10.1007/S10664-021-10078-2
https://doi.org/10.1145/280277.280280
https://doi.org/10.1145/1101815.1101817
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1109/ICSE.2015.218
https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://doi.org/10.1109/SP.2012.13
https://www.kernel.org/doc/html/v4.11/process/applying-patches.html
https://www.kernel.org/doc/html/v4.11/process/applying-patches.html
https://doi.org/10.1145/2351676.2351731
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1145/3646548.3672585
https://doi.org/10.1145/3643991.3644902
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1109/ICSE43902.2021.00147
https://doi.org/10.1145/2025113.2025185
https://doi.org/10.1145/1993316.1993537
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/SANER56733.2023.00035
https://doi.org/10.1007/BF01840446
https://doi.org/10.1145/3650212.3652134
https://doi.org/10.1145/3540250.3549112
https://doi.org/10.1109/EDCC.2015.23
https://doi.org/10.1109/ICSME55016.2022.00032
https://doi.org/10.1145/2970276.2970288
https://doi.org/10.1145/3460319.3464821
https://doi.org/10.1109/ICSME.2016.88
https://doi.org/10.1109/ICSME.2016.71
https://git-scm.com/docs/git-apply
https://git-scm.com/docs/git-apply
https://git-scm.com/docs/git-cherry-pick
https://git-scm.com/docs/git-cherry-pick
https://doi.org/10.1145/2658761.2658766
https://savannah.gnu.org/projects/patch/
https://doi.org/10.2307/3001968
https://doi.org/10.1145/3576915.3623188

	Abstract
	1 Introduction
	2 Motivation
	2.1 Language-Agnostic Patching
	2.2 Current Language-Agnostic Patchers

	3 A Novel Language-Agnostic Patcher
	3.1 Patching Algorithm
	3.2 Implementation

	4 Evaluation Methodology
	4.1 Data Collection
	4.2 Evaluation of Patcher Effectiveness

	5 Results
	5.1 Overview of Mined Cherry Picks
	5.2 Evaluation of Patchers on our Dataset
	5.3 Impact on Frequently Patched Projects.

	6 Discussion
	6.1 Answers to Our Research Questions
	6.2 Threats to Validity

	7 Related Work
	7.1 Techniques Related to Patching
	7.2 Studies on Patching Practices

	8 Conclusion
	References

