
⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Community-Driven Variability: Characterizing a
new Software Variability Paradigm

Roman Bögli1*, Alexander Boll1, Alexander Schultheiß1,
Timo Kehrer1

1Institute of Computer Science, University of Bern, Bern, Switzerland.

*Corresponding author(s). E-mail(s): roman.boegli@unibe.ch;
Contributing authors: alexander.boll@unibe.ch;

alexanderschultheiss@pm.me; timo.kehrer@unibe.ch;

Abstract
Both software engineering researchers and practitioners have increasingly shifted
their focus from single software systems to software families, reflecting the
need for software industrialization through systematic reuse of implementation
artifacts. Interestingly, several vibrant ecosystems produce software families in
a radically different way than classical variability-intensive systems, notably
software product lines (SPLs). The Bitcoin community, for instance, evolves
its ecosystem through crowdsourced improvement proposals being continuously
shaped and autonomously implemented by independent actors. While this novel
paradigm of Community-Driven Variability (CDV) has proven effective for driv-
ing flourishing technologies like Bitcoin and others, it also comes with unique
challenges calling for novel solutions. In this paper, we define the key charac-
teristics of ecosystems exposing CDV and derive a taxonomy that hierarchically
decomposes each characteristic into constituting sub-characteristics. Building on
the taxonomy, we conduct a systematic analysis of 14 software ecosystems to eval-
uate the presence and nature of CDV. We highlight the novel problems they face,
such as the lack of ecosystem overview, difficulties in impact assessment, misalign-
ment between proposals and implementations, and interoperability breakdowns
– challenges that transcend classical variability management. Based on the prob-
lem analysis, we outline our research vision to tackle these challenges, including
a sketch of concrete starting points for technical solutions. While classical SPLs
and CDV ecosystems differ drastically, we believe that feature-oriented modeling
and analysis offers promising concepts for addressing CDV challenges without
enforcing product-line processes. Conversely, the unique demands of CDV can
inspire advances in variability research with impact beyond its original domains.

Keywords: software families, software variability, improvement proposals,
implementation derivatives, interoperability, evolution

1

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

1 Introduction
Since Parnas’ seminal work on program families in the 1970s [1], both software
engineering researchers and practitioners have increasingly shifted their focus from
developing single software systems to managing families of software variants sharing
common functionality [2]. The variants in a software family share common function-
ality, motivated by the need to accommodate varying requirements across different
markets, customer needs, or operational environments [2]. Today, the impact of Par-
nas’ work is seen everywhere in modern software engineering, ranging from agile
modular design to preplanning-intensive platforms for manufacturing highly cus-
tomized software variants. The most systematic class of approaches for developing
such variability-intensive systems is summarized under the umbrella term of software
product-line (SPL) engineering [2, 3], which relies on an explicit model of variability
in terms of features realized based on an integrated software platform [4, 5]. More
specifically, an SPL is implemented by mapping features onto implementation arti-
facts and choosing a variation mechanism which specifies how to generate individual
products [3, 5, 6]. Success stories of SPL adoption have been reported for various
domains, notably for embedded control software [3] in automotive [7], aerospace [8],
railway [9], and telecommunications [10], as well as and for systems software such
as the Linux kernel [11]. Recent literature also discusses more liberal approaches to
managing software families, spanning a continuum that ranges from managing ad-hoc
clone-and-own [12–15] over flexible product-line adoption [16–21] to feature toggling
[22, 23] in distributed open-source communities. Although they deviate from rigorous
product-line engineering, all these approaches deal with software variability in one
way or another.

While today’s software families use countless different approaches to manage
software variability, they share two common key characteristics. First, the main moti-
vation for dealing with software variability is due to economic reasons. In essence,
it involves adopting the principles of industrialization and mass customization from
other engineering disciplines, with the goal of shortening time-to-market and reduc-
ing development and maintenance costs [3]. Second, managing software variability
revolves around the fundamental principle of software reuse, albeit at varying lev-
els of systematic organization and planning [24]. At its core, however, it is software
reuse that avoids the redundant development and maintenance of software artifacts
implementing common functionality of the members of a software family.

Interestingly, several vibrant ecosystems produce software families in a radically
different way than classical variability-intensive systems. They are driven by factors
other than software industrialization and mass customization, and exhibit variabil-
ity that is not focused on reusing implementation artifacts nor centrally managed.
Instead, they focus on achieving interoperability within the software family through
the ecosystem community’s continuous effort to shape an open set of specification doc-
uments, referred to as improvement proposals (IPs). Based on this set of IPs, developer
groups within the community independently derive their own variants by selecting
and implementing a desired subset of IPs. This independent derivation fosters a broad
range of software variability across multiple dimensions.

2

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

BIP: <BIP number, or "?" before being assigned>

* Layer: <Consensus (soft fork) | Consensus (hard fork) | Peer Services |

API/RPC | Applications>

Title: <BIP title; maximum 44 characters>

Author: <list of authors' real names and email addrs>

* Discussions-To: <email address>

* Comments-Summary: <summary tone>

Comments-URI: <links to wiki page for comments>

Status: <Draft | Active | Proposed | Deferred | Rejected | Withdrawn |

Final | Replaced | Obsolete>

Type: <Standards Track | Informational | Process>

Created: <date created on, in ISO 8601 (yyyy-mm-dd) format>

License: <abbreviation for approved license(s)>

* License-Code: <abbreviation for code under different approved license(s)>

* Post-History: <dates of postings to bitcoin mailing list, or link to thread in

mailing list archive>

* Requires: <BIP number(s)>

* Replaces: <BIP number>

* Superseded-By: <BIP number>

Figure 1: BIP preamble structure from BIP2 [25].

As an example for such an ecosystem, consider Bitcoin [26] with its various
application types (e.g., nodes, wallets, block explorers, side-chains) and actors (e.g.,
developers, users, analysts). The concepts that define Bitcoin, along with any potential
features introduced to the ecosystem, are shaped by Bitcoin Improvement Proposals
(BIPs) [27], a decentralized collection of open-source specification documents writ-
ten by independent actors sharing mutual interests. The structure and process for
proposing, approving, discarding, and managing BIPs is itself also specified in this
manner, specifically in BIP2 [25]. An excerpt of this BIP specification is presented
in Figure 1, showing the template preamble each BIP should follow. Developers
independently choose and implement subsets of BIPs in their applications, yielding
a constantly growing set of software variants to which we refer as implementation
derivatives. These derivatives may address different use cases (e.g., nodes, wallets,
exchanges, watchtowers, block explorers) even though they are derived from a common
set of BIPs. Conceptually, the commonalities and differences among these deriva-
tives can be partially described in terms of BIPs, but there is typically no reuse of
development artifacts at the implementation level. In fact, the variable dimension
even spans over to the technology stack used to implement the derivatives, mak-
ing classical code reuse less applicable. Nevertheless, we see the ecosystem evolving
with incredible dynamism, exposing multidimensional variability to which we refer as
Community-Driven Variability (CDV).

Beyond Bitcoin, this novel form of CDV also appears in other ecosystems out-
side the digital money domain, each applying a slightly different interpretation of
IPs. Examples include the InterPlanetary File System (IPFS) [28] with InterPlane-
tary Improvement Proposals (IPIPs) [29], The Onion Router (Tor) [30] with its design
proposals (TorDPs) [31], and Nostr [32], a decentralized protocol for secure message

3

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

exchange via cryptography and distributed relays, which uses Nostr Implementa-
tion Possibilities (NIPs) [33]. Section 5 revisits these examples in detail, along with
additional ecosystems from both within and outside the digital money domain.

The paradigm of continuously shaping a de-facto standard and its implementation
derivatives has proven to be an effective method for evolving open-source technolo-
gies with significant dynamism and traction. Yet, these ecosystems not only encounter
challenges similar to those of classical variability-intensive systems, but also entirely
new ones. Without an explicit variability model, managing the consistent evolution
of IPs becomes increasingly challenging and error-prone. BIP2, for example, has
recently (Sep. 18, 2024) received a revision request [34] motivated by several “pain
points”. This indicates the need to improve the governance of the decentralized pro-
posal process, addressing growing challenges wrt. maintaining overview, transparency,
and consensus within the current proposal framework. Furthermore, derivatives may
expose impaired interoperability, which is usually not the case for classical software
families where variants are meant to be standalone software products. For example,
a Reddit post [35] raises awareness for incompatibility issues induced by BIP32 HD
Wallets. This BIP proposed a way to deterministically derive a hierarchy of asym-
metric key pairs from a single secret [36]. Follow-up discussions on Bitcoin Stack
Exchange [37] and a wallet recovery site [38] underscore the issue’s severity. In addi-
tion, various online resources exist for curating, comparing, and recommending wallet
applications [39–43]. These handcrafted ad-hoc monitoring efforts underscore both
the richness of existing variability and, more importantly, the need to manage it effec-
tively. Yet, this need remains largely unaddressed and offers substantial potential for
systematic, especially automated, solutions that would benefit the community.

While classical SPL domains and emerging technologies following the CDV
paradigm appear miles apart, we recognize the value in exploring this novel paradigm
and the possibility of adapting concepts from one paradigm to the other. Since the use
of features as a central domain abstraction in SPLs aligns well with IPs in CDV, adapt-
ing feature-oriented modeling and analysis seems promising for tackling CDV-induced
problems without necessitating the adoption of product-line development processes.
Conversely, research on classical variability-intensive systems will gain new momen-
tum through the unique problems posed by CDV, leading to advancements that will
push the state-of-the-art and generate new insights that may ultimately influence
other domains.

In this paper, we outline our research vision on entering the novel field of CDV,
summarizing our contributions as follows:

• We introduce the concept of CDV and describe this emerging paradigm using
our motivating example of Bitcoin in Section 3.

• Based on these observations, we derive the generalized defining characteristics in
Section 4, constituting a taxonomy to systematically evaluate whether a given
ecosystem is subject to CDV or not.

• We employ this taxonomy on a set of case studies in Section 5 to scrutinize this
CDV-detecting methodology and classify other CDV exhibiting ecosystem.

4

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

• Having defined and extensively studied its constituting characteristics, we
examine key problems faced in ecosystems that exhibit CDV (Section 6).

• We derive our research vision and concrete research goals to address the key
problems and outline our next steps to accomplish them (Section 7).

Succeeding our initial short paper on CDV [44], this paper significantly extends
the scope and depth of our analysis of CDV ecosystems and their characteristics. In
particular, we extend our previous work in the following ways:

• We enrich our initial case study of Bitcoin as a prominent example of CDV with
several additional examples from online resources, providing a more nuanced view
of CDV dynamics in practice.

• We provide foundational background on variability-intensive software systems in
a dedicated section, thereby improving the self-contained nature of this work.

• Rather than generalizing CDV characteristics through informal descriptions, we
now present a taxonomy that hierarchically decomposes each characteristic into
defining sub-characteristics.

• Building on this taxonomy, we perform a thorough analysis of 14 software
ecosystems, evaluating the presence and nature of CDV characteristics and sub-
characteristics. This replaces our previous high-level comparison between classical
software families and CDV-based ecosystems.

• We broaden our analysis beyond clearly differentiated cases (e.g., Bitcoin vs.
SPL) by including ecosystems such as the Python programming language, where
the distinction between CDV and classical variability is more subtle.

• Finally, we refine our research vision by concretizing promising starting points for
future technical solutions aimed at advancing CDV in practice, with a particular
focus on systematic and automated approaches.

5

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

2 Background, Motivation and Scope
Software variability can be understood both as a phenomenon that arises naturally and
as a capability intentionally designed into software systems. The former, descriptive or
observational dimension, reflects the insight that software systems inevitably change
and diversify over time; an insight that dates back to the early days of software
engineering and the emergence of the discipline itself (Sec. 2.1). The latter, prescriptive
or constructive dimension, considers variability as a design concern or software quality;
an ambition that has shaped software engineering practice for decades and remains
an active software engineering research area today (Sec. 2.2). While a comprehensive
survey is beyond the scope of this section, we recall a set of fundamental definitions
representative of the two dimensions to underpin our subsequent discussion, and to
motivate and position our work within the existing literature (Sec. 2.3).

2.1 Software Variability as a Natural Phenomenon
In his foreword of the edited book on software engineering for variability-intensive
systems by Mistrik et al. [45], Grundy characterizes software variability as the “expec-
tation that computing systems will vary throughout their lifecycle”, where variability
may manifest through adaptation to, e.g., diverse domains and users, deployment on
heterogeneous platforms, or ongoing organizational and environmental change. This
characterization reflects what we refer to as the natural phenomenon of software vari-
ability as an intrinsic characteristic of the lifecycle of any non-trivial software system.
Looking back further in history, although the term was not used as explicitly as it
is today, software variability as a natural phenomenon lies at the heart of several
seminal works and turning points in software engineering. For example, variability as
a phenomenon was a key factor that led to the software crisis of the 1960s, which
revealed the growing difficulty of maintaining and adapting increasingly complex soft-
ware systems [46]. The observational view also aligns with Lehman’s Laws of Software
Evolution, first formulated in the 1970s, which identify continuous change as a defin-
ing characteristic of any real-world software system [47]. Today, it is commonly agreed
that software variability is the manifestation of evolutionary pressure, i.e., a system’s
necessity to adapt. Looking at more recent literature, this perspective is reflected and
refined in, e.g., the taxonomy proposed by Ananieva et al. [48], who use the terms
variability and evolution somewhat interchangeably, distinguishing between software
variability (or evolution) in time and in space. This distinction links the temporal
dynamics of system change with the structural diversity of co-existing variants. In
sum, all of these works articulate software variability as a descriptive concept, rooted
in the observation of how software systems evolve and diversify in response to internal
and external change.

2.2 Software Variability as a Capability
In contrast to the observational view, the taxonomy proposed by Svahnberg et al.
defines software variability as “the ability of a software system or artefact to be effi-
ciently extended, changed, customized, or configured for use in a particular context” [6].
This definition highlights that the software engineering community has long recognized

6

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

the need to address the limitations of treating variability as an unmanaged, emergent
phenomenon, as the uncontrolled proliferation of software variants through simple, ad-
hoc clone-and-own practices has been shown to result in redundancy, inconsistencies,
and increased maintenance costs [49]. Consequently, rather than viewing diversity as
an unavoidable side effect of evolution, researchers and practitioners began to treat
software variability as a design concern that should be made explicit and systemati-
cally controlled. In a broader view, such proactive treatment of software variability
is one of the contributing factors to overall improved evolvability, i.e., the ability to
adapt to change [50, 51]. Numerous developments exemplify this paradigm shift,
ranging from organizational transformations such as the replacement of waterfall-like
processes by agile methods, over technological advances and the emergence of novel
architectural and programming paradigms supporting flexibility and reuse, to the rise
of continuous practices tightly integrated with tools like version control and CI/CD
pipelines.

The transition from an observational to a constructive view of variability is mani-
fested in Parnas’ seminal work on program families in the 1970s [1], which argued that
systems should be developed as families of related programs rather than as isolated
products. This line of thinking laid the conceptual foundation for software product-
line engineering (SPLE) [2, 3], which today can be seen as the most systematic and
rigorous approach to treating variability as a first-class engineering capability. Soft-
ware product lines (SPLs) promote the use of features as an “optional or incremental
unit of functionality” [52] or as a “product characteristic that is used in distinguish-
ing programs within a family of related programs” [53]. These definitions emphasize
that features are supposed to provide a suitable abstraction for managing variability
both in time (capturing progress over time in terms of newly introduced function-
ality) and in space (describing the commonalities and differences across a family of
related, co-existing variants).

SPLs make features explicit throughout the entire system and software lifecycle,
from requirements and architecture to implementation and testing. Accordingly, an
SPL relies on an explicit model of variability in terms of features that are realized
through an integrated software platform [4, 5]. Thereby, abstract features are mapped
to concrete implementation artefacts, and a suitable variation mechanism specifies
how individual products can be automatically derived from shared artifacts. Within
the paradigm of SPLs, Apel et al. define software variability as “the ability to derive
different products from a common set of artefacts” [3]. Similar to the definition of
Svahnberg et al. [6], this view reframes variability from a natural consequence of
software evolution into a deliberate design goal, emphasizing software reuse and the
automated nature of product generation in SPLs.

Today, the fundamental principles of SPLs are well understood. However, the
research field remains highly active, particularly in areas such as product-line test-
ing and analysis [54], as ensuring the quality of millions or even billions of potential
product variants remains one of the most significant challenges in SPLE. Another
ongoing research frontier concerns the evolution of entire product lines over time,
thereby realizing the vision of supporting variability both in space and in time [55].
The ongoing relevance of these challenges is reflected in major research venues such

7

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

as SPLC1, VaMoS2, and ICSR3, which will merge in 2026 to form the VARIABILITY
conference4, highlighting the continued importance of research on software variability.

2.3 Research Motivation and Scope
In this paper, we introduce a new form of software variability that we term
Community-Driven Variability (CDV). Building on the definitions of variability
introduced above, we adopt a developer-centric perspective to study this phenomenon.
Thereby, our focus lies on the observational dimension, in which we describe CDV and
its defining characteristics. We then discuss a set of challenges that reveal how this
form of variability lies in the tension between descriptive and constructive understand-
ings of variability. Finally, we outline our research vision, arguing that principles from
SPLE may inspire constructive approaches to addressing these emerging challenges in
the future.

By establishing this vision, we lay the groundwork for a broader research agenda
motivated by three key factors. First, CDV represents an unexplored form of vari-
ability that is radically different from established paradigms within the domain of
variability-intensive systems. Second, it introduces unique challenges that warrant
deeper analysis and novel technical solutions. Third, the fact that CDV is adopted
across diverse and widely used software ecosystems underscores its practical relevance
and the significant impact that advancements in this field can achieve.

1International Systems and Software Product Line Conference: https://splc.net
2International Working Conference on Variability Modelling of Software-Intensive Systems: https://vamo
sconf.net

3International Conference on Systems and Software Reuse; last edition in 2025: https://conf.researchr.org
/home/icsr-2025

4International Conference on Software and Systems Reuse, Product Lines, and Configuration; first edition
in 2026: https://conf.researchr.org/home/variability-2026

8

https://splc.net
https://vamosconf.net
https://vamosconf.net
https://conf.researchr.org/home/icsr-2025
https://conf.researchr.org/home/icsr-2025
https://conf.researchr.org/home/variability-2026

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

IP

IP

IP
IP

IP

IP

IP IP

IPIP

IP

IP

Figure 2: A schematic overview of the CDV landscape.

3 Showcasing CDV Characteristics in Bitcoin
Following on the descriptive perspective of software variability as a naturally occurring
phenomenon outlined in Section 2.1, we ground our exploration of the emerging CDV
paradigm in concrete observations drawn from practice. As a starting point, we begin
with a focused examination of the Bitcoin ecosystem as our motivating example that
initially inspired our work. Bitcoin, introduced in 2008 [26], is an electronic version
of cash that operates without central authority. It relies on a peer-to-peer network
and a public ledger, the blockchain, where data blocks are linked via cryptographic
hashes and validated through distributed consensus [56]. Anyone may maintain a full
copy of this ledger and issue transactions through one of the many available clients,
commonly referred to as wallets.

Our examination of the Bitcoin ecosystem within the emerging CDV paradigm
is grounded in online resources, supplemented by interviews with a Bitcoin deriva-
tive developer and an advanced end user. We illustrate a summary of our results
in Figure 2. The proposal spectrum comprising the ecosystem’s improvement pro-
posals (IPs) is illustrated on top. The lower part illustrates the derivative spectrum
comprising the ecosystem’s applications, indicated as implementation derivatives
d1 − d6 implementing varying sets of IPs. Both the proposal spectrum and the
derivative spectrum evolve continuously, indicated by time progressing from left to
right.

IPs are open-source specification documents written by independent actors sharing
mutual interests. A substantial amount of IPs closely aligns with the traditional notion
of features, with some even becoming synonymous with feature names. For instance,
BIPs are reflected in the user interface (UI) of wallet applications such as Sparrow [57].
Figure 3 illustrates this by showing the wallet initialization wizard, where users can

9

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Figure 3: Sparrow [57] UI displaying BIP-based wallet creation features.

select from a list of features to configure a wallet according to their preferences.
There, IP-based feature names such as BIP32 HD Wallets [36] and BIP39 Mnemonic
Seeds [58], widely used in the Bitcoin community, are proactively mirrored in the
interface itself.

Moreover, IPs have a dedicated status and may expose various kinds of interre-
lations (connection lines between IPs in Figure 2). BIP2 (cf. Figure 1), for instance,
mentions status labels ranging from draft over final up to replaced or obsolete, and IP
interrelations such as requires, replaces, or superseded-by. This indicates that IP sta-
tuses and interrelations are continuously reshaped, extended, overruled, or rejected.
For example, BIP84 requires BIP173, while BIP173 has replaced BIP142 and itself is
superseded by BIP350. While being similar in nature, other ecosystems may define a
different set of IP statuses and may have other kinds of interrelations.

Applications constituting the derivative spectrum may be created at different
points in time, each of them implementing an autonomously selected set of IPs (dashed
arrows from dn to IPs). While exposing variability in terms of conceptual features
shaped by IPs, implementation derivatives can be built on various technology stacks
and serve distinct or overlapping purposes. Figure 2 illustrates this range of technology
and purpose using different shapes and gradient-colored backgrounds, respectively.
We deliberately illustrate the IP set implemented by a derivative separately from its
purpose, as the latter cannot always be inferred solely from the former. Some deriva-
tives remain stable over time (d1, d6), while others may evolve. In the latter case, this
evolution can unfold in various dimensions, e.g., the supported IP set (d3 → d3

′), a
shift in the intended purpose (d2′), or migrating to other technology stacks (d5′′).

From an organizational standpoint, derivatives possess full autonomy in compos-
ing their IP sets. However, to promote interoperability, the ecosystem’s community
typically maintains a shared understanding of the de-facto standard at any given time.
We illustrate the evolving de-facto standard as a forward-moving IP cloud that may
morph in shape over time. Core IPs serving as active building blocks for other depen-
dent IPs are likely to be implemented more frequently by derivatives than others, and
thus contribute to the perception of a de-facto standard (central part of an IP cloud in

10

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Figure 4: Electrum [59] UI displaying a variant of BIP-based wallet creation features,
defaulting to its own implementation variant.

Figure 2). Outside this de-facto standard, there may be other IPs or informal proposals
which are not (yet) officially approved but generally accepted by the community (outer
part of an IP cloud). For instance, other renowned sources such as, e.g., the Satoshi-
Labs Improvement Proposals (SLIPs) [60], augment the primary catalog of BIPs [27].
Likewise, IPs that are not yet finalized can still become part of de-facto standard if
widely adopted. For example, the widespread implementation of the aforementioned
mnemonic seeds according to BIP39, though officially holding “proposed” status until
November 2024 (now classified as “final” [61]), has long been a standard feature among
derivatives. Conversely, derivatives may counter established IPs using their own alter-
natives motivated by their own technological goals. The derivative Electrum [59], for
instance, argues shortcomings in BIP39 and thus “does not generate BIP39 seeds” by
default [62], advocating its own alternative as shown in Figure 4. Both Sparrow and
Electrum additionally support a SLIP – specifically SLIP39 – which exemplifies the
full freedom derivatives have in choosing which IPs to support, even if they originate
from entirely different catalogs or sources, as is the case here with SatoshiLabs.

Together, these examples illustrate the considerable flexibility derivatives exercise
in selecting which IPs to implement, even across catalogs. Moreover, these wallet
creation methods reflect not only the diversity across implementation derivatives, but
also the configurability of the derivatives themselves, a form of variability that closely
resembles classical software variability on top of CDV.

11

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

4 Constituting Characterization of a Novel Paradigm
By generalizing from the insights in the previous section, we now define the constitut-
ing characteristics of ecosystems exhibiting CDV. Clarifying the core CDV traits lays
the groundwork for recognizing whether CDV is present within a given ecosystem and
to what extent. Further, establishing a taxonomy of characteristics from these traits
provides the analytical foundation for developing automated approaches capable of
supporting or amplifying CDV processes.

We derive the constituting characteristics through iterative open idea shaping. For
the development of the characteristics, we use a broad and iterative three-step process
that encompasses a variety of ecosystems, not limited to Bitcoin.

Step 1 – Discovery: In the first step, we examined ecosystems that implement
or adopt peer-to-peer electronic coins or other decentralized systems with a simi-
lar ideological orientation. In addition, our consulted domain experts (e.g. Lightning
developer) pointed out candidate ecosystems to discover. Lastly, we also discovered
other ecosystems that follow a comparable IP-driven development culture, such as
Tor with its Design Proposals (TorDPs) or Python with its Enhancement Proposals
(PEPs).

Step 2 – Internal Validation: In the second step, we identified common and
diverging characteristics among the set of discovered ecosystems in order to recognize
defining observations that informed our shared understanding of CDV. The emerg-
ing taxonomy fragments were thereby constantly re-evaluated across the candidate
ecosystems to clarify and further contrast the interrelations among the conceptual
dimensions of the identified characteristics.

Step 3 – External Validation: In the third and final step, we applied the tax-
onomy to well-known, variability-intensive ecosystems frequently cited in the SPL
and clone-and-own research domains to test its external boundaries. This exter-
nal validation helped to distinguish genuinely CDV-inducing traits from those that
only superficially resemble them, thereby sharpening the conceptual definitions estab-
lished in the previous step. As anticipated, some individual (sub)characteristics also
appeared in these classical variability paradigms. This partial overlap was expected,
given that our broader research scope still resides within the domain of variability-
intensive systems. However, as we will show later in Section 5, these classical variability
paradigm representatives do not exhibit all traits that collectively define CDV, under-
scoring the distinctiveness and novelty of the CDV paradigm. Recognizing these
partial overlaps was essential for refining the taxonomy’s discriminatory power and
ensuring that the identified characteristics capture CDV as a systemic phenomenon
rather than an arbitrary set of overfitted traits.

We repeated the three steps iteratively, each cycle yielding incremental refinements
and sharper delineations of the emerging characteristics until the taxonomy reached a
stable form. Across all three steps, we continuously resolved ambiguities and disagree-
ments among the authors to reach consensus, while also integrating feedback from
domain experts to iteratively refine and validate the emerging taxonomy. The result-
ing taxonomy of constituting CDV characteristics is presented in the remainder of this
section. Acknowledging the pioneering nature of this work, we abstain from claiming
completeness of this constituting characteristics. Yet we believe that the employed

12

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Taxonomy of CDV Characteristics

C1: Improvement Proposal C2: Crowdsourcing C3: Derivatives C4: Interoperability C5: Evolution

a. de-facto standard

b. interdependencies

c. IP attributes

a. open

b. continuously shaped

c. actors

a. individual IP set

b. independent

c. IP implementation

a. drives ecosystem’s value

b. derivative interaction

a. autonomous

b. decoupled

importance statuses

categories

independent

distributed authority

use case

technology stack

direct indirect

Figure 5: Taxonomy of CDV characteristics.

iterative three-step process ensures conceptual soundness and correctness. In contrast
to the short and informal sketch presented in our preceding paper [44, Fig. 3], the tax-
onomy presented in this work offers a more fine-grained and validated account of the
traits that give rise to CDV. Particularly, we emphasize the key sub-characteristics
composing each characteristic and summarize the hierarchy in Figure 5: five core char-
acteristics partitioned into 13 sub-characteristics (green boxes), which may be further
refined by supplementary attributes (bottom uncolored boxes).

C1 – Improvement Proposals

“There exists a de-facto standard that defines how an ecosystem shall operate using
a set of improvement proposals (IPs) that can have dependencies, varying levels of
importance, and undergo different states.”

The phenotype of a software ecosystem exposing CDV should be defined by a set
of IPs, exhibiting the notion of specification documents. To fulfill C1, a given (sub)set
of these IPs should represent (a) a de-facto standard that is accepted by the major-
ity of the actors in the ecosystem. Further, these IPs are designed in such a way that
they share (b) interdependencies among each other and possess (c) attributions
on level of importance, evolve through different statuses, and target different layers or
categories. While verifying the existence of attribution mechanisms and interdepen-
dencies is relatively straightforward, determining the presence of a de-facto standard
is more ambiguous. We judge the latter using proxies such as widespread implemen-
tation across derivatives, consistent references in technical discourse, and our own
internal review to assess whether a consensus exists.

C2 – Crowdsourcing

“This de-facto standard of the ecosystem is open and continuously shaped by
independent actors with distributed authority.”

13

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Crowdsourcing ensures that ecosystem evolution is driven by community contribu-
tions rather than by centralized control. This requires the ecosystem to be (a) fully
open-source, allowing diverse contributors to influence its progression and evolution.
Beyond source code, this openness must extend to documentation, design, and other
artifacts essential for ecosystem understanding and operation. To ensure the ecosys-
tem’s continued vitality and a truly community-driven character, we further require
(b) continuous development by (c) independently acting participants with-
out central authority, including IP contributors, derivative developers, end users,
and researchers. In practice, these criteria are often met when contribution is gen-
uinely open. However, we explicitly define C2 to exclude ecosystems that, despite
being nominally open-source, remain effectively closed. For instance, those controlled
by a single company where only employees contribute, or where the code is publicly
visible but external contributions are not permitted.

C3 – Independent Derivatives

“Developers choose a set of IPs from which they implement independent derivatives
using different technology stacks and targeting different use-cases.”

Arguably the most intuitively identifiable CDV characteristic concerns the pres-
ence of diverse software applications – here denoted as derivatives – that thematically
reside and interact within the same ecosystem. Developers retain full autonomy in
(a) selecting which IPs to implement and in deciding how to realize them tech-
nically. While their development proceeds (b) independently, they share a common
orientation toward the underlying IP catalog, which constitutes the ecosystem’s de-
facto standard. The notion of independence here also implies that derivatives are
not tightly coupled: they do not rely on the same developers or on one another for
functionality, interfaces, or updates. As illustrated by the example of Bitcoin, such
derivatives are (c) built using different technology stacks and/or target dis-
tinct use cases. In contrast, C3 is insufficiently fulfilled in ecosystems where a
substantial number of derivatives are implemented through shared components, or
exhibit homogeneity in technology and purpose.

C4 – Interoperability

“The ecosystem’s value and flourishing substantially depends on and encourages
direct or indirect derivative interaction.”

While many ecosystems emerge from crowdsourced, IP-driven development that
gives rise to a variety of derivatives, interoperability among these is often incidental
or altogether unimportant. Frequently, such derivatives are designed to operate in
isolation, with no requirement for interaction. In contrast, CDV ecosystems are defined
by interoperability as a core trait. Ecosystems fulfilling C4 share a common interest in
maintaining compatibility among derivatives, as the (a) ecosystem’s overall value
– and the incentive to engage with it – fundamentally depends on this interoperability.
Such (b) interaction between derivatives may be either direct (e.g., a Nostr client

14

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

communicating with relays) or indirect (e.g., different Bitcoin wallets interpreting the
same blockchain data).

C5 – Decoupled Evolution

“The de-facto standard, its feature specification, and the derivatives evolve
autonomously and detached from each other while following their own life cycles.”

The fifth and final constituting characteristic of CDV ecosystems concerns their
unrestrained evolution, which can be decomposed into two sub-characteristics. First,
evolution is (a) autonomous, meaning that the de-facto standard, individual IP cat-
alogs, and derivatives evolve with little to no centralized coordination. We consider
this trait not fulfilled when a central organization with authoritative control is present,
as its mere existence may disproportionately influence the direction of ecosystem evo-
lution. Second, evolution is (b) decoupled, indicating that these elements progress
independently, each following its own life cycle and development trajectory. An illus-
trative example is BIP39 [58], which – despite retaining “proposed” status until late
November 2024 – had already been widely adopted by multiple derivatives for years.

15

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

5 Fulfillment of CDV Characteristics in Various
Variability Paradigms

The taxonomy constructed in the previous section (cf. Figure 5) establishes a shared
vocabulary and conceptual clarity for both researchers and practitioners, and also
serves as a constructive tool for systematically evaluating and comparing ecosystems.
In this section, we apply this taxonomy to classify ecosystems that exhibit different
variability paradigms, following the process outlined in Section 5.1. With this, we aim,
on the one hand, to illustrate the breadth and diversity of the CDV ecosystem land-
scape. On the other hand, we showcase how closely related other variability paradigms
(i.e., SPL and clone-and-own) are to CDV, and also how they differ. Our classification
thus reveals concrete opportunities to transfer methods and insights between CDV
and these established paradigms, fostering cross-paradigm innovation and research
synergies. While our main findings are presented in Table 1 and explained in detail
for each ecosystem in Sections 5.2 to 5.5, we provide a summary of our classification
in Section 5.6.

5.1 Taxonomy-Based Classification Process
For the classification process, we reutilized the set of ecosystems accumulated during
the three-step taxonomy derivation process described in Section 4. Specifically, the
candidate ecosystems identified in ‘Step 1 – Discovery’ formed the core of this set,
as they were originally selected for their high likelihood of exhibiting CDV-related
dynamics. We complemented this set with the prominent SPL and clone-and-own
ecosystems already used in ‘Step 3 – External Validation’ of the taxonomy derivation
process. Together, this selection provides a diverse and balanced basis for classification,
spanning from archetypal CDV cases to classical variability-intensive systems.

For each ecosystem, we rate each of the sub-characteristics in binary terms, and
mark its outcome as either fulfilled (✓) or not (-). In cases where a sub-characteristic
is further refined by supplementary attributes, it is considered fulfilled if at least one
attribute applies (logical OR, cf. Figure 5). The resulting scores are summarized in
Table 1. We emphasize that CDV affiliation unfolds along a continuum rather than
representing an absolute classification. Our presented taxonomy therefore serves as an
analytical instrument for identifying the presence of CDV-inducing traits rather than
as a diagnostic threshold. Since CDV affiliation is not an all-or-nothing condition, we
deliberately abstain from defining a rigid cut-off. For presentation purposes, however,
we grouped the ecosystems in Table 1 according to their observed tendency: ecosys-
tems displaying a pronounced concentration of CDV characteristics are grouped using
the paradigm label CDV, while the remaining ones are classified under their classi-
cal variability paradigms (SPL and clone-and-own) or assigned to a residual category
(Others).

As with the taxonomy of CDV characteristics itself (cf. Figure 5), we do not claim
completeness regarding the ecosystems presented in Table 1. Undoubtedly, additional
and less prominent software ecosystems may exist that fall within or between the
identified paradigm groups, depending on their specific sub-characteristic manifes-
tations. This is consistent with – and indeed intended by – our view of CDV as a

16

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Table 1: Assessment of CDV characteristics in representative ecosystems.

Paradigm Ecosystem/Project C1 C2 C3 C4 C5
a b c a b c a b c a b a b

CDV

Bitcoin [26, 27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Lightning [63–65] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ethereum [66, 67] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓

Nostr [32, 33] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tor Protocol [30, 31] ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ - ✓

IPFS [28, 29] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓

SPL
Linux Kernel [68, 69] ✓ ✓ - ✓ ✓ ✓ - - - - - - -

Eclipse [70] - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - -
BusyBox [71] ✓ ✓ - ✓ ✓ ✓ - - - - - - -

Clone-
and-
Own

Apo-Games [72] - - - - - - ✓ ✓ ✓ - - - ✓
Marlin Forks [73] - - - ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓

Health Watcher [74] - - - - - - ✓ ✓ - - - - ✓

Other Home Assistant [75] - - - ✓ ✓ - - ✓ ✓ - ✓ - ✓
Python [76, 77] ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ - - - ✓

continuum. By focusing on correctness rather than completeness, the presented clas-
sification yields strong evidence that CDV constitutes a distinct and novel paradigm
that deserves dedicated academic attention.

5.2 CDV Ecosystems
We first examine ecosystems that, according to our taxonomy, most prominently
exhibit CDV characteristics as naturally emerging phenomena and analyze how these
traits manifest across them. In doing so, we deliberately adopt an observational stance,
describing the phenomena as they appear in practice, similar to early studies in
variability-intensive systems research. For brevity, we use the term “CDV ecosystem”
to denote a software ecosystem that largely fulfills the constituting CDV character-
istics and thereby exemplifies the CDV paradigm, with its specific peculiarities and
problems. Building on our motivating example Bitcoin, we extended the analysis to
the broader set of candidate ecosystems accumulated during ‘Step 1 – Discovery’ of the
taxonomy derivation process (cf. Section 4). This includes adjacent systems within
the electronic money domain, allowing us to explore the generalizability of CDV phe-
nomena under related conditions. In addition, we incorporated examples from outside
this domain that, based on our research, showed a high likelihood of exhibiting CDV
characteristics.

5.2.1 Bitcoin and Lightning

In Section 3, we already discussed Bitcoin [26, 27] in detail, acting as guiding exam-
ple for the observed CDV phenomena and as foundation for generalizing its defining
characteristics. Another prominent example of such an ecosystem is the Lightning Net-
work [63], which is a second-layer protocol built on top of Bitcoin for enabling instant
off-chain payments. Despite being closely related to Bitcoin, Lightning exhibits its

17

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

own IP catalogs, specifically through the Basis of Lightning Technology (BOLT) [64]
and Bitcoin Lightning Improvement Proposals (bLIPs) [65]. Later, a third IP source
evolved called Lightning URL Documents (LUDs) [78], which further extends the
two catalogs specifically towards URL specifications to streamline inter-derivative
communications.

Similarly to Bitcoin, the derivative spectrum in Lightning features multifaceted
and independent implementations (3/3 in C3) such as, for instance, Lightning Network
Deamon (LND) [79] written in Go, Eclair [80] written in Scala, and Core Lightning
(CLN) [81] written in C. Besides their heterogeneous technology stack, these deriva-
tives also focus on different IP sets (3/3 in C1), which has even led to the introduction
of feature flags according to BOLT9 [82] in the form of bit vectors to maximize
interoperability (2/2 in C4). Yet, BOLT9 states that “[s]ome features [. . .] became so
widespread they are ASSUMED to be present by all nodes”, underpinning the existence
of a de-facto standard (3/3 in C2). Likewise, the LUDs catalog [78] states, that “[e]ach
new LUD may be implemented by some wallets and not others, some services and not
others, but they should still maintain compatibility at all times”. With the absence of
a central authority as in Bitcoin, the Lightning ecosystem and its components evolves
autonomously and detached from each other (2/2 in C5). Overall, we find the Lightning
ecosystem to show all of our 13 sub-characteristics.

5.2.2 Ethereum

Ethereum [66] arguably represents the second most prominent blockchain ecosys-
tem after Bitcoin, distinguished by its programmable smart contract functionality
and support for decentralized applications (dApps). Unlike Bitcoin’s primary focus
on peer-to-peer value transfer, Ethereum operates as a distributed computing plat-
form that enables developers to deploy arbitrary code through smart contracts.
The ecosystem comprises diverse components including blockchain clients, develop-
ment frameworks, wallets, and dApp platforms, all coordinated through Ethereum
Improvement Proposals (EIPs) [67] that govern protocol evolution and feature
specifications.

C1 is fully satisfied (3/3) through EIPs [67] that are segmented in categories like
core or networking, and possess statuses like draft, final, or withdrawn. The desig-
nated “Required” field in EIPs attests interdependencies, as it is the case with, e.g.,
EIP4938 [83].

Like Bitcoin and Lightning, the Ethereum ecosystem is open and actively devel-
oped. While the Ethereum Foundation holds a disproportionately dominant position
and exercises notable authority [84], contributions remain open, and independent
developers and organizations actively shape the ecosystem. We therefore assign C2 a
score of 3/3.

As in Bitcoin and Lightning, the Ethereum ecosystem features a large number of
derivatives, built with different technologies, targeting different use cases and thus
also emphasis different sets of EIPs. This includes, for instance, the Ethereum client
Geth [85] written in Go, the browser-extension wallet MetaMask [86] written in Type-
Script, and the Non Fungible Token (NFT) marketplace protocol OpenSea [87] written
in Solidity. Consequently, C3 is fully satisfied with a score of 3/3.

18

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Like Bitcoin and Lightning, Ethereum’s token transfer protocol incentivizes seam-
less interoperability: clients synchronize state, wallets interact with smart contracts,
and dApps communicate across the network. Thus, C4 is fully satisfied with a score
of 2/2.

Finally, the Ethereum ecosystem evolves in a largely decoupled manner. Contri-
butions to EIPs are not coordinated with the evolution of concrete implementations
in the derivative spectrum, as these artifacts are maintained by independent individ-
uals or teams. Yet, the influential role of the Ethereum Foundation constrains the full
autonomy of this evolution. Thus, C5 is partially satisfied with a score of 1/2.

5.2.3 Nostr

Nostr [32], short for ‘Notes and Other Stuff Transmitted by Relays’, is a decentralized
protocol based on a publish-subscribe communication model secured through asym-
metric cryptography. By design, it maintains a lightweight architecture composed of
only two core components: clients, which generate and consume events, and relays,
which receive and disseminate them. Although it has primarily gained traction as a
protocol powering decentralized social media alternatives to platforms like Twitter/X,
its architecture is broadly applicable to other use cases, including microblogging, col-
laborative editing, video platforms, and identity systems. Some interpretations even
propose that Nostr may serve as a social layer within the Open Systems Interconnec-
tion (OSI) model [88], offering the possibility of integration with diverse application
architectures.

As mentioned earlier, the Nostr ecosystem is defined and progressed on using
Nostr Implementation Possibilities (NIPs) [33], which function as community-driven
specifications for protocol extensions and behaviors while also functioning as de-facto
standards. These NIPs also exhibit interdependencies as, for instance, NIP46 [89]
depends on NIP44 [90]. We also record that the NIPs are attributed with statuses like
draft, final, or unrecommended. Thus, C1 is fully satisfied with a score of 3/3.

Although the initiator of the Nostr protocol is well-known [91], the ecosystem
today’s dynamism is largely crowdsourced. The project is fully open-source and –
according to its GitHub statistics [33] – vividly developed by a wide range of actors.
Ergo, we assign a score of 3/3 to C2.

Nostr [33] is a decentralized social network protocol that allows users to publish and
subscribe to messages. The variety of Nostr derivatives is vast, with implementations
ranging from simple command-line clients to complex web applications. As of the
time of writing, for example, around 1’000 relays were recorded online, operating
on 79 different software stacks [92]. In fact, the community attempts to maintain
oversight of this heterogeneous derivative landscape using handcrafted indexes and
catalogs [93, 94]. Consequently, C3 is fully satisfied with a score of 3/3.

As in Bitcoin, Lightning, and Ethereum, the Nostr ecosystem naturally focuses
on interoperability, driving its value. Interaction between clients and relays is a core
feature of the protocol, enabling users to publish and subscribe to messages of all
kinds. Thus, C4 is fully satisfied with a score of 2/2.

Finally, the Nostr ecosystem evolves autonomously and detached from each other.
The contributions to NIPs are not orchestrated with development progression in,

19

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

e.g., the aforementioned derivatives, nor vice-versa as these artifacts are developed
by independent teams or individuals. We therefore deem C5 as fully satisfied with a
score of 2/2.

5.2.4 Tor Protocol

The Onion Router (Tor) [30, 31] is a privacy-focused overlay network designed to
enable anonymous communication over the Internet. It achieves this by routing
traffic through a series of nodes using layered encryption, obfuscating the source,
destination, and content of network packets. Tor is primarily known for powering
privacy-preserving web browsing through the Tor Browser [95], but its underlying pro-
tocols and network are also leveraged in applications like onion services and secure
communications infrastructure.

As part of its architectural evolution, the Tor ecosystem relies on a set of structured
design documents known as Tor Design Proposals (TorDPs) [31], defining the de-
facto standard. As in the previously discussed ecosystems, TorDPs possess statuses
(e.g., open, accepted, needs-revision) and may reference other proposals. For instance,
TorDP324 [96] depends on TorDP289 and TorDP325, or TorDP291 [97] has superseded
TorDP236. We deem C1 therefore fully fulfilled with 3/3.

While Tor is open-source and public contributions are technically possible, the
development and governance of the protocol and related software are largely coor-
dinated by The Tor Project itself, a non-profit organization [98]. This includes core
Tor developers, employed maintainers, and project leads who guide most architectural
decisions and manage the life cycle of proposals. Nonetheless, input can come from
the wider community, with contributors acting and contributing independently of this
central authority. We thus grant C2 a score of 3/3.

The Tor ecosystem features components across multiple layers, including the C-
based Tor daemon [30] and the Tor Browser [95] built with JavaScript and C++.
While these projects differ in technology and main functionality, most are developed
under the coordination of The Tor Project [99], and fully independent derivatives are
scarce. We therefore assign C3 a score of 2/3.

As in Nostr, interoperability is essential for a network protocol like Tor, where
clients must communicate with the distributed relay infrastructure to enable core
functionality such as traffic routing. Mechanisms for backward compatibility and fea-
ture negotiation are built into the protocol [100, 101]. Thus, C4 is fully satisfied with
a score of 2/2.

Although The Tor Project coordinates much of the protocol development, parts of
the ecosystem – such as onion services (Tor-based services accessible only via .onion
addresses) and bridges (unlisted relays used to bypass censorship) – evolve with their
own timelines and maintainers. While a few derivatives exist outside the organization’s
core projects, the ecosystem remains more centrally coordinated than, e.g., Bitcoin or
Nostr, which is why we do not credit the autonomous evolution sub-characteristic. The
absence of strict top-down integration across derivatives, however, implies a degree of
decoupling in the evolution trajectory. Accordingly, C5 is partially fulfilled with 1/2.

20

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

5.2.5 IPFS

IPFS [28, 29], short for InterPlanetary File System, is a decentralized protocol for
content-addressed file sharing across a peer-to-peer network. As Nostr, IPFS minimizes
architectural complexity by relying on simple primitives. Nodes store, retrieve, and
replicate data based on cryptographic hashes rather than centralized URLs. While
originally conceived as a more resilient and decentralized alternative to the traditional
web, IPFS has since been adopted in diverse contexts, including static site hosting,
blockchain data availability, and archival storage. It is increasingly viewed as a core
building block for decentralized application infrastructure [102].

Although the IPFS ecosystem defines its architecture and core principles primar-
ily through conventional documentation, IPIPs [29] nonetheless serve as the formal
vehicle for proposing and tracking protocol-level changes and new features. IPIPs
exhibit structured metadata such as status labels (draft, accepted, final, withdrawn)
and inter-proposal references. We therefore assign C1 a score of 3/3.

IPFS is fully open-source and technically open to collaborative development across
multiple organizations and individual contributors. While development is primarily
coordinated by Protocol Labs [103], which retains strong influence over the proto-
col’s direction, individuals can still contribute independently and shape parts of the
ecosystem. We therefore assign C2 a score of 3/3.

The IPFS ecosystem features numerous independent implementations and deriva-
tives built with different technology stacks and targeting various use cases. Renowned
implementations include kubo [104] written in Go, or helia [105] written in Type-
Script. Beyond these, numerous other specialized projects exist with each serving
different user needs and deployment scenarios [106]. We therefore assign C3 a score
of 3/3.

Interoperability is central to IPFS’s design philosophy, aiming to enable seamless
data exchange across diverse implementations and platforms. Accordingly, interaction
among derivatives clearly drives the ecosystem’s value and growth, justifying a C4
score of 2/2.

The IPFS ecosystem exhibits decoupled evolution, with various tools and imple-
mentations evolving on their own timelines and objectives. As with Ethereum, while
the ecosystem demonstrates decoupled evolution across different implementations and
use cases, the strong influence of Protocol Labs in coordinating protocol development
limits the degree of autonomous evolution. We therefore assign C5 a score of 1/2.

5.3 Software Product Lines
Software product lines (SPL) [2, 3, 107] define and implement variants in an integrated
platform. The variability of the system is defined in terms of a feature model [4, 5],
which defines the features of the system and how these features are related. Variants
of the system are generated using a variability mechanism such as the C-preprocessor
with its #if and #ifdef macros. The variability mechanism determines which code
should be included based on the features that are selected for a variant.

There are substantial differences between SPL development and CDV. In contrast
to CDV derivatives, SPL variants have a shared set of artifacts that implement the

21

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

features of the system. Variants are not changed directly but indirectly by changing
the shared artifacts and generating updated versions of the variants. Lastly, SPL vari-
ants are typically meant to operate independently and address the needs of different
customers or platforms (e.g., different hardware, embedded vs. general-purpose archi-
tecture). We selected SPL case studies that are well-documented in the literature,
ensuring a reliable basis for contrasting them with CDV ecosystems.

5.3.1 Linux Kernel

The Linux kernel [68, 69] serves as the foundation for numerous operating systems,
including various Linux distributions and Android. The features of the kernel are
defined in terms of configuration options using KConfig [108], a custom configuration
language which allows specifying feature hierarchies and dependencies. The features
are primarily implemented in C, and the variability of the source code is defined using
the C-preprocessor and the kernel’s custom build system, KBuild. Different variants
of the kernel can be generated by selecting desired features and then calling KBuild
to compile the variant. We included the Linux kernel as ecosystem since it is one of
the most popular subjects for product line research (e.g., [109–112]) given its practical
relevance and its huge size. The number of features grows steadily and there are about
20,000 features in 2024 [113].

While the Linux kernel does not use a formalized system of improvement proposals
(IPs) akin to CDV ecosystems, there exist a de-facto standard in form of configuration
options. These options are explicitly documented in the KConfig configuration files
with their dependencies and other relationships. New configurations options can be
proposed via mailing lists, where they undergo community review and discussion
before potential inclusion. Although configuration options follow an implicit lifecycle,
their status is not explicitly tracked or attributed. We therefore assign C1 a score of
2/3.

The Linux kernel is a continuously evolving open-source project to which any-
one can contribute by submitting patches. It is under active development, and we
deem contributors to act largely independently. While a degree of central author-
ity remains with its initiator, Linus Torvalds, he does not review every submitted
patch. The responsibility for decision-making is instead distributed among indepen-
dent sub-groups and maintainers. We thus conclude that C2 is fully fulfilled with
3/3.

As a well-established representative of SPL, the Linux kernel generates all variants
from a shared set of artifacts. Consequently, the variants are fully dependent on each
other regarding their implementation and evolution, leading to a C3 score of 0/3.

Each variant of the Linux kernel is the foundation for a specific instance of an
operating system (OS). The main value of this system does not come from interoper-
ability between OS instances but from the general functionalities of an OS. Although
interactions may occur in rare cases, such as in distributed file systems, they are not
typical. We therefore assign C4 a score of 0/2.

Finally, C5 is also not fulfilled (0/2) because configuration options and their imple-
mentation, from which variants are generated, always evolve together in a coordinated
way.

22

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

5.3.2 Eclipse

The Eclipse IDE [70] is a plugin-based software platform that can be tailored for
various purposes. For instance, it can be configured as an IDE for Java, C++, or as a
framework for modeling tools. Variants of Eclipse are created by selecting desired sets
of plugins, with several pre-configured distributions available that users can further
customize. The project is open source and maintained by the Eclipse Foundation [114],
which oversees its development. Anyone can submit change requests, report issues,
or propose code changes, which are reviewed by project committers before inclusion.
Additionally, it is possible for developers to create and distribute their own plugins
to extend the platform’s functionality. Due to its flexible architecture and plugin
ecosystem, Eclipse is frequently cited in the literature as an example of a SPL (e.g.,
[115–119]).

Each plugin in the Eclipse ecosystem can be viewed as a separate IP: It typi-
cally documents its purpose, functionality, and metadata such as development status,
supported Eclipse versions, or OS. Interdependencies between plugins may also be
explicitly documented. However, the set of existing plugins does not constitute a de-
facto standard. Instead, we find that they are optional extensions to the Eclipse IDE.
We therefore assign C1 a score of 2/3.

While core changes are centrally governed under the authority of the Eclipse Foun-
dation, anyone can contribute new plugins to the ecosystem. As a result, the plugin
landscape is continuously shaped, involving independent developers and organizations.
We therefore assign C2 a score of 3/3.

On the same note, the development of plugins happens independently and devel-
opers can freely choose which new functionality they want to implement. Although
most plugins are written in Java and must integrate with Eclipse’s extension points,
they target a wide range of different use cases. Since our criterion is satisfied by either
technological diversity or diverse use cases, we assign C3 a score of 3/3.

Eclipse variants (i.e., installations with different plugin sets) generally do not
need to interoperate. The ecosystem’s value lies in supporting different programming
and modeling languages, not in enabling interaction between Eclipse installations.
Accordingly, C4 is rated at 0/2.

Similarly, C5 is not fulfilled (0/2), as plugins combine both the specification and
implementation of an IP, causing them to evolve together.

5.3.3 BusyBox

The developers of BusyBox [71] refer to it as the “Swiss Army Knife of Embedded
Linux”. It is a collection of Unix utilities (e.g., cat, ln, and ls) compiled into a single
binary after configuration. Commonly used in embedded Linux systems, BusyBox can
be tailored to specific architectures and hardware. It employs the same configuration
and variability mechanisms as the Linux kernel,namely KConfig and KBuild, to define
features and generate variants. Given that it is not as immense in size as the Linux
kernel and still manageable (cf. [120]), it is frequently referenced in SPL research (e.g.,
[121–125]) particularly for variability analysis. Due to their close relationship, the

23

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

development of BusyBox and the Linux kernel are highly similar. Thus, the scores
with respect to the different characteristics of CDV are also the same.

Busybox also has a de-facto standard in form of configuration options with inter-
dependencies, but no attributions (C1 2/3). BusyBox is also open-source and under
continuous development, to which anyone can contribute by submitting patches. We
therefore assign C2 a score of 3/3. Its variants are generated from a common set of
artifacts and fully dependent on each other (C3 0/3). Each variant of BusyBox is a
toolbox tailored to the requirements of a specific platform. The main value of Busy-
box comes from the utilities that it provides to a system. We are not aware of any
interoperability between variants (C4 scored with 0/2). Lastly, same as for Linux, C5
is not fulfilled (0/2) because configuration options and their implementation always
evolve together.

5.4 Clone-and-Own Projects
The term clone-and-own refers to the practice of cloning and adapting existing soft-
ware variants to quickly create new ones [12, 13, 49]. The process usually starts with
a single software variant that is implemented without planning for future variants.
Once the need for a different variant of the system arises (e.g., due to the demands of
a new customer), developers clone the variant by duplicating all its software artifacts.
The thereby created clone is then adapted by changing the duplicated artifacts, for
example, by removing undesired functionality.

The only similarities between clone-and-own and CDV are the notion of indepen-
dent derivatives (variants), and that they can evolve autonomously and detached from
each other. However, even in this regard, clone-and-own variants are less independent
than CDV derivatives, because clone-and-own variants are cloned from each other and
use the same technology stack, while CDV derivatives are fully independent and may
use any technology stack. Furthermore, there is no de-facto standard based on which
the variants are implemented, and variants can undergo arbitrary adaptations. Clone-
and-own variants are also not intended to be interoperable as they represent unique
customizations of a system for different purposes. To analyze how CDV characteris-
tics contrast with more traditional forms of variability, we selected representative case
studies of clone-and-own development based on their prominence in the literature and
the availability of detailed information.

5.4.1 Apo-Games

The Apo-Games are a series of games developed by Dirk Aporius [72] using clone-
and-own. The games were developed in Java and Android. Each game developed
before 2013 has been created by cloning and adapting artifacts of its predecessors,
while there was a break in this process due to a framework migration that required
a new implementation for newer games. Together with Dirk Aporius, Krüger et al.
[126] selected 20 Java and 5 Android variants as a realistic case study for the reverse
engineering of domain knowledge (e.g., knowledge about features and how they are
implemented). This case study has been used by several other works on clone-and-own
development (e.g., [127–131]). While the source code of the selected 25 variants was

24

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

made available, the remaining variants and the original projects of the 25 variants are
not available publicly.

As is typical for clone-and-own projects, Apo-Games does not have an explicitly
documented set of IPs, or anything similar (0/3 in C1). While some variants were
made publicly available in form of the case study mentioned above, the development
of Apo-Games is performed closed-source by Dirk Aporius (0/3 in C2).

The variants of Apo-Games were developed independently of each other by cloning
and adapting an existing variant. For each variant, Dirk Aporius could freely choose
which features of the cloned variant to retain and which new features should be added.
Each variant is the implementation of a different game, which we consider as variants
targeting distinct use cases. Thus, we score C3 with 3/3. However, the Apo-Games
variants are standalone games that have no form of interoperability, leading to a score
of 0/2 in C4.

Apo-Games does not fulfill the sub-characteristic of autonomous development
because there is a single developer with sole authority. Nevertheless, the evolution
of variants is decoupled and each variant had its own lifecycle and development
trajectory. Thus, we score C5 with 1/2

5.4.2 Marlin Forks

Marlin [73] is an open source firmware for 3D printers written in C++ and C. The
Marlin projects aims at supporting various boards and machine configurations and
is highly customizable. Several research works (e.g., [49, 132–135]) focus on a subset
of the thousands of forks of Marlin, which are considered a practical case study for
clone-and-own development [49]. While many forks are social forks that are created
to contribute to the original project, the majority of forks diverge from the original
constituting separated variants [49]. Here, cloning is done by independent developers
or groups of developers that simply fork the original project on GitHub.

There is no common, de-facto standard for the forks of Marlin. Each fork may
implement arbitrary new functionality without specifying or documenting this func-
tionality. Thus, we attribute C1 with 0/3 Marlin and its forks are publicly available
and anyone can contribute to the ecosystem, either by creating a new fork (i.e., a new
variant), or by contributing changes to one of the existing variants. The ecosystem
therefore undergoes continuous development and is shaped by independent actors. We
score C2 with 3/3.

Typical for clone-and-own variants, the forks of Marlin are implemented indepen-
dently of each other and developers can, in principle, freely choose which configuration
options (IPs) to implement. However, in the case of Marlin, all variants target the
same use case (i.e., 3D printer firmware), and have a shared technology stack due to
cloning. Thus, we score C3 with 2/3 The printers and their firmware do not have to
interact or interoperate (C4 0/2).

The evolution of Marlin forks is generally autonomous and decoupled. Each fork
may have its own developer or group of developers and forks may heavily diverge from
the mainline. Forks have their own lifecycle that is independent of other forks. Each

25

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

fork may alter how a specific IP (configuration option) is implemented and the de-
facto standard and the derivatives are essentially decoupled, resulting in a C5 a score
of 2/2.

5.4.3 Health Watcher

Health Watcher [74] was developed to improve the service quality of health care insti-
tutions by allowing the public to submit health complaints. For example, users could
report restaurants, prompting investigations by the responsible authorities. Health
Watcher has been used as a case study in several research works on clone-and-own
development (e.g., [136–140]). The case study consists of 10 variants representing
different releases of the system, each involving multiple changes such as feature addi-
tions or refactorings. Although these 10 variants are available online, we were unable
to locate the original project and found no evidence that it was developed as an
open-source initiative.

There is no explicit specification of IPs (or features) and there is no de-facto stan-
dard for the different variants of Health Watcher. Thus, C1 is not fulfilled (0/3). As we
were not able to locate the original project in which Health Watcher was developed,
we have to take a conservative stance and assume that it was not developed through
crowdsourcing. There likely was a central authority that oversaw the developed Health
Watcher and the different variants. Thus, C2 is also not fulfilled (0/3).

The variants of the Health Watcher are different releases of the system. We con-
sider them independent, as each variant could, in principle, completely change which
functionality is offered and how it is implemented. Similar to other clone-and-own
projects, the variants share a common purpose and technology stack. Thus, we score
C3 with 2/3. Yet, Health Watcher variants have no interoperability, because they are
merely different releases of the same system, not intended to interact (C4 0/2).

Lastly, we consider that the autonomous evolution of the variants is not fulfilled,
because they were likely developed by the same central authority. Their evolution was
decoupled, however, as they evolved after one another. Thus, we score C5 with 1/2.

5.5 Other
To broaden our perspective and provide a counterbalance to the previously discussed
domains, we included ecosystems from more distant areas that appeared promis-
ing for exhibiting CDV characteristics. We examine Home Assistant from the IoT
domain, where interoperability is an active area of research [141–147]. Additionally,
we include Python as a widely used programming language, that also uses IP-driven
methodologies for its language evolution.

5.5.1 Home Assistant

Gaining increasing popularity in recent years, Home Assistant [75] is an open platform
for (smart) home automation and IoT device management. Its vendor-agnostic archi-
tecture enables users to retain control, avoiding ecosystem lock-in while facilitating
flexible, self-authored automation across heterogeneous IoT environments.

26

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

While Home Assistant has extensive documentation and a structured devel-
opment process, it does not rely on formal improvement proposals (IPs) in the
traditional sense. Instead, feature development and architectural decisions are coor-
dinated through GitHub issues, pull requests. The lack of a formal IP catalog with
statuses and interdependencies means C1 is not fulfilled, resulting in a score of 0/3.

Home Assistant is fully open-source and actively maintained by a vibrant commu-
nity of contributors. However, the project is heavily influenced by Nabu Casa [148], the
company founded by Home Assistant’s creator, which provides centralized direction
and coordination. This centralized influence limits the distributed authority aspect of
crowdsourcing, leading to C2 score of 2/3.

The Home Assistant ecosystem does not support individual IP set selection, as it
lacks a dedicated IP catalog. Nonetheless, it features a range of independent extensions
and tools, notably through shadow platforms such as the Home Assistant Com-
munity Store (HACS) [149, 150], which index third-party UIs, automation engines,
or reverse-engineered device integrations. Although deploying and maintaining such
independently developed derivatives appears to be gradually becoming more challeng-
ing, they nonetheless exhibit diversity in both technology stacks and use cases. We
therefore assign C3 a score of 2/3.

While direct interoperability between derivatives remains limited and is frequently
cited as a challenge within the Home Assistant ecosystem [151], we argue that indirect
interactions do occur through automation workflows. For instance, integrations can
be chained to trigger complex sequences across heterogeneous devices. This form of
functional interoperability contributes to the ecosystem’s value, albeit in a constrained
manner, as most derivatives retain their utility even when operating in isolation. We
therefore assign C4 a score of 1/2.

Evaluating the evolutionary characteristic, we see autonomy not fulfilled in the
Home Assistant ecosystem. As with previously analyzed ecosystems, a dominant orga-
nization (Nabu Casa) plays a central role in directing the platform’s development and
roadmap. Furthermore, evolutionary steps are predominantly initiated by external
hardware manufacturers who release new devices that the community subsequently
integrates, reflecting a unidirectional evolutionary flow. In contrast, we see decoupling
fulfilled, as community-driven add-ons and custom integrations can evolve indepen-
dently of the core platform and demonstrate a degree of organic growth. We therefore
assign C5 a score of 1/2.

5.5.2 Python

As a widely used, interpreted language with decades of active development,
Python [76] serves as a worthwhile case study to assess CDV properties. Its ecosys-
tem extends far beyond the reference interpreter (CPython), comprising alternative
runtimes, a comprehensive standard library, and over 650,000 third-party packages
published on the Python Package Index (PyPI) [152].

The de-facto standard of Python and its library is formalised through Python
Enhancement Proposals (PEPs) [77], that cross-references to related proposals (e.g.,
PEP654 depends on PEP622). They also carry structured metadata such as type

27

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

(standards-track, informational, process) and status (draft, accepted, rejected). Hence,
C1 is fully satisfied with 3/3.

Python is open-source and continuously shaped through publicly visible contri-
butions and reviews. However, the language’s technical direction and maintenance
is influenced by the Python Software Foundation (PSF) [153] and its elected Steer-
ing Council (defined in PEP13 [154]), which oversees the acceptance of PEPs. We
therefore assign C2 a score of 2/3.

Besides the reference interpreter CPython other independent derivatives exist such
as MicroPython [155] (written in C) or RustPython [156]. These projects are main-
tained by independent teams and may implement only a subset of the available PEPs.
For example, MicroPython provides a dedicated documentation page on feature dif-
ferences as it “implements Python 3.4 and some select features of Python 3.5 and
above” [157]. Consequently, we assign C3 a score of 3/3.

Python derivatives function as standalone interpreters, with generally no practi-
cal expectation of cross-runtime execution or artifact sharing. Unlike the previously
treated protocol-based ecosystems, Python’s value does not substantially rely on such
interaction. Consequently, C4 is rated 0/2.

Python derivatives evolve on independent timelines, e.g., MicroPython and
RustPython maintain separate release cycles that diverge from CPython’s annual
cadence, demonstrating decoupled evolution. However, core language development
remains coordinated by the PSF and its Steering Council, limiting the autonomous
evolution of the overall ecosystem. We therefore assign C5 a score of 1/2.

5.6 Summary
The main findings of our analysis in this section are presented in Table 1. CDV
ecosystems consistently fulfill all or nearly all sub-characteristics of our taxonomy
from Figure 5, with only Ethereum, Tor and IPFS missing one or two of them. In
contrast, ecosystems from other paradigms (SPL, Clone-and-Own, and Other) show
significantly lower fulfillment. However, given the limited number of representative
ecosystems, we advise caution in assuming that other ecosystems within the same
paradigm would exhibit identical characteristic profiles.

A key insight emerging from our analysis is that none of the non-CDV ecosystems
exhibit derivative interactions that give rise to a shared interest in interoperability
(C4) that is essential to the ecosystem’s overall value. In contrast, CDV ecosys-
tems are characterized by such interactions, often incentivized by design, fostering
a sustained commitment to compatibility despite notable heterogeneity in purpose
and technology stacks. This makes derivative interaction – and the resulting drive
for interoperability – a defining and potentially exclusive trait of CDV ecosystems.
Moreover, the autonomous and decoupled evolution of IPs, derivatives, and de-facto
standards appears to be a necessary condition for sustaining these interaction patterns
at scale. CDV ecosystems exemplify this, whereas ecosystems from other paradigms
exhibit tighter coupling and a more linear relationship between specification and
implementation, limiting the versatility of evolutionary trajectories. This interplay of
interoperability and autonomy may thus serve as a useful indicator for identifying or
predicting CDV-like dynamics in emerging systems.

28

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

6 Emerging Problems
We identified several generalizable challenges faced by key actors in Community-
Driven Variability (CDV), including IP maintainers, derivative developers, and end
users. We focus on those that transcend classical variability-intensive systems and
were confirmed in our interviews with Bitcoin experts. In the following, we present
an exemplary selection, enriched by concrete anecdotes from the Bitcoin ecosystem.
Note, however, that the listed problems are not confined to Bitcoin but also inherent
to other ecosystems due to the fundamental characteristics of CDV.

P1 & P2 – Missing overview of proposal and derivative spectrum: Due
to the dynamics imposed by characteristics C2-C5, communities typically lack an
overview of the entire ecosystem and its evolution. Consequently, involved actors lack
orientation for guiding their decisions within the ecosystem. This missing overview
is felt on both levels: the proposal spectrum (P1), and the derivative spectrum (P2).
Realizing the need for an overview, the Bitcoin community already created a number
of websites that monitor [41], compare [39, 42, 158], or suggest [40] derivatives. These
efforts are largely handcrafted and ad-hoc, reflecting a highly manual process that
highlights both the richness of existing variability and the need for more systematic
management.

P3 – IP change impact assessment: The actors (C2) in the ecosystem face
challenges during suggesting and updating IPs (C1), such as avoiding unforeseen
side effects and change impact assessment (C4). For example, although on-boarding
developer guidelines exist in Bitcoin [159], resources that document the interrelations
between BIPs or their perceived feature impacts are missing. As of today, contribu-
tors must manually trace dependencies, cross-checking IPs and inferring potential side
effects, or rely on experts with tacit knowledge of the ecosystem.

P4 – Misalignment of proposal and derivative spectrum: There is a com-
mon interest to avoid a misalignment (C5) of derivatives and the proposal spectrum.
Yet, developers (C3) lack necessary guidance for alignment, while end users are unable
to verify it, undermining trust in derivatives (C4) and in the ecosystem. This lack
of guidance is exemplified in Electrum avoiding BIP39 [62], whereas Sparrow “tries
wherever possible to adhere to commonly accepted standards [to] have as wide an
interoperable”. [57]

P5 – Determining interoperability of derivatives: The shared interest in
interoperability (C4) forces developers and end users to be aware of potential restric-
tions of derivative interactions. A lack of interoperability can lead to immense damage,
such as permanent financial losses due to wallet recovery issues [38, 160] or incor-
rectly mined blocks [161]. As mentioned earlier, some communities already introduced
partial solutions for this problem, e.g., feature flags [82], a handshake, that tests
what features the other derivative implements prior to actual interaction. However,
users could place more trust into a more rigorous procedure, that is formally derived
from and enforced through an ecosystem’s variability model. Currently, interoperabil-
ity between derivatives largely depends on cumbersome manual testing or becomes
apparent only through user reports of experienced issues.

P6 – Ecosystem fork: The independent evolution of proposals and deriva-
tives (C5) can lead to complex phenomena: As some IPs are embraced by the whole

29

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

community, others may be rejected by a part of the community (C3). This can lead
to a split within the ecosystem into fractions or a complete detachment, as sub-
communities drift further and further apart. Ultimately, such detachments provoke
yet another variability source for both IPs (C1) and derivatives (C3), catalyzing the
severity of P1-P5. In Bitcoin and related domains this phenomenon is referred to as
fork and has occurred several times in the past (e.g., Bitcoin Cash, Gold, SV) [162].

30

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

7 Research Vision
Having established a foundational understanding of CDV (Section 4), demonstrated
its discriminative power against other variability-intensive paradigms (Section 5), and
elaborated its implications as concrete problems (Section 6), this section now states
our research outlook to advance this emerging space. Therewith, we aim to move
from a purely observational and descriptive view of CDV as a naturally and largely
unmanaged phenomenon toward a more capability-oriented perspective, where CDV
exhibiting ecosystems can be systematically supported and guided. Our research
vision is to develop foundations for methods supporting the continuous evolution of
ecosystems exposing CDV, tackling the problems identified in Section 6. We focus
on understanding and auditing its multidimensional dynamics, and on providing
means for constructive, organizational and analytic quality assurance. We present
our research goals, promising starting points for technical solutions with particu-
lar potential for automated approaches, and envisioned research methods and study
subjects.

7.1 Research Goals
RG1 – Systematic treatment of CDV in proposal spectrum: Our first research
goal is threefold. First, we aim to develop a variability modeling formalism and nota-
tion that can adequately capture CDV ecosystems and their evolution, providing a
structured, explorable representation of the proposal spectrum amenable to analy-
sis (P1). Second, we want to support the automated extraction of CDV models from
various resources, with a focus on deriving variability models directly from IP collec-
tions. Third, analysis techniques shall be developed to reason about the structure and
constraints of CDV models, spotting anomalous IPs and interrelations. This includes
methods for differential analysis of CDV models representing different proposal spec-
trum snapshots, facilitating change impact analyses in the proposal spectrum (P3,
P6).

Impact: Holistic modeling of a CDV ecosystem’s topology fostering comprehensi-
bility and auditability.

RG2 – Supporting cohesive evolution of proposal and derivative spec-
trum: Given the autonomous evolution of these two spectra, our goal is to better
understand and measure their cohesion (P4). This includes providing configuration
support through CDV model-guided IP selection and first cohesion assessments by,
e.g., checking a given set of IPs against a CDV model. However, the major endeavor
pursued with this research goal is to support tracing of IPs from the proposal to the
derivative spectrum, providing a better understanding of the derivative spectrum (P2)
and facilitate further change impact analyses (P3). Besides IP traceability, we aim
at mining CDV models from existing derivatives, enabling comparisons with those
extracted from the IP spectrum (P4) and analyzing potential drift between community
forks (P6). Such mining and processing efforts should leverage automation potential to
ensure replicability and sustainably support an ecosystem’s development trajectory.

31

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

Impact: Streamline the evolution of ecosystems by increasing the efficiency and
effectiveness of future development endeavors.

RG3 – Methodical handling of derivative interoperability impairment:
Synthesizing our research goals targeting the proposal spectrum and its cohesion with
the derivative spectrum, we dedicate our final research goal to address the challenges
related to impaired interoperability within the derivative spectrum (P5), which boils
down to handling and detecting undesired inter-derivative IP interactions. Anticipated
interactions shall be documented and articulated through the CDV model, amenable
to automatically validating derivatives wrt. proposal spectrum alignment (P4). Unan-
ticipated interactions impairing interoperability shall be detected through systematic
and automated IP interaction testing, which must be both effective and efficient to
be accepted in practice.

Impact: Reduce the effort and complexity of proper inter-derivative feature testing,
further maximizing interoperability and positive user experience.

7.2 Starting Points for Technical Solutions
In general, our technical solutions for achieving our research goals RG1-RG3 shall
adopt existing variability mechanisms as far as possible, yet with radically different
goals and assumptions, and without the need to adopt product-line development pro-
cesses which hardly apply to the dynamics of community-driven ecosystems. While
our three research goals are largely orthogonal, technical solutions for RG2 and RG3
depend on progress towards RG1, which aims to introduce a modeling formalism that
serves as the backbone for various types of analysis. In the sequel, we will thus present
our initial directions for addressing RG1 in more detail, while outlining higher-level
considerations for RG2 and RG3.

7.2.1 Starting Points for RG1

Variability modeling formalism and proposal spectrum analysis: Inspired by
classical approaches to variability modeling and problem space analysis [3], the first
and most essential step towards RG1 is to develop a variability modeling formalism
and notation that adequately captures CDV. While IPs in CDV ecosystems align well
with the classical notion of a feature as central domain abstractions, it remains an
open question whether existing feature modeling constructs are sufficiently expressive
to capture the more complex nature of IPs.

In particular, IPs are not merely Boolean features as typically assumed in FODA-
like feature models [163], but instead carry additional semantics, such as the word
seeds of BIP39 and SLIP39 used in the BIP-based wallet creation in Sparrow (see
Figure 3). We anticipate that this additional information must be considered when
reasoning about ecosystem evolution and interoperability concerns, particularly when
such analyses are performed in an automated manner. As a starting point, we plan to
explore the adequacy of the Universal Variability Language (UVL) [164], which aims to
unify diverse variability modeling approaches across domains. Although UVL provides

32

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

a flexible foundation, it may require extensions to support the specific constructs and
metadata associated with IPs in CDV ecosystems.

Moreover, given the evolutionary and dynamic character of CDV, we aim to lift
temporal evolution as a primary modeling concern. Unlike conventional variability
modeling in software product-line engineering, which focuses primarily on variabil-
ity in space during domain analysis, we propose a holistic modeling approach that
superimposes variability in both space and time [48]. Specifically, we envision a formal
definition of IP life cycles, including valid states and state transitions, as well as mech-
anisms to capture and later on reason about actual transitions as they occur in a CDV
ecosystem. The conceptual research challenge is to design a modeling notation that
supports the superimposition of variability in time and space, and serves as a basis for
automated spatio-temporal analysis. As a starting point for addressing this challenge,
we consider existing advanced modeling frameworks such as Hyper Feature Models
(HFMs) [165] and Dynamic Feature Transition Systems (DFTS) [166]. HFMs extend
traditional feature models to capture evolution over time, albeit currently limited to
simple versioning scenarios. Still, this direction is promising for reflecting the multi-
dimensional nature of CDV. Similarly, DFTSs, though designed for dynamic software
product lines (DSPLs) with runtime reconfiguration, offer a context-aware transition
model that could potentially be adapted to capture CDV dynamics.

On the analysis side, representing CDV evolution based on transition systems
enables the application of temporal logic to formally specify and verify evolution con-
straints. For instance, a constraint such as “If IP A requires IP B, then B must be
active before or at the same time as A becomes active” can be expressed using linear
temporal logic (LTL) [167] in combination with classical variability constraints (e.g.,
propositional logic). As for advanced analyses of the proposal spectrum evolution, the
idea of semantic feature model differencing [168] may be adapted to the differential
analysis of CDV model snapshots. The corresponding empirical research task is to
evaluate the applicability and effectiveness of such analyses in real-world CDV ecosys-
tems. On the methodological side, the task involves developing intelligent approaches
to sustainably streamline efforts in formal specification and differential analysis of
derivatives, leveraging their untapped potential for automation.

Variability model mining and IP consistency checks: As a preparatory step
towards variability model mining, we have started to extract IP relationship graphs for
the Bitcoin ecosystem. The nodes of these graphs represent individual BIPs, while the
edges denote different kinds of inter-BIP relationships. Two such graphs are shown in
Figure 6. The nodes are colored according to the BIPs’ respective status5 as of July 5,
2025. While both graphs represent the same subset of BIPs, the interelationships have
been extracted using different methods. The edges in Figure 6a represent explicitly
declared references to other BIPs, extracted from the respective fields (i.e., Requires,
Replaces, and Superseded-By) declared by a BIP’s preamble (cf. Figure 1). On the
contrary, for the extraction results shown in Figure 6b, we sought to capture implicit
references by scanning entire BIP documents for mentions of other BIPs using regular
expressions. As these references cannot be classified into any categories using this

5 See specification of the BIP status field in [25].

33

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

118

374

180

342

84 155
142

338

343

375

174

135

352

20

173

372

373

21

328

129

83

345

2

350

370

327

389

146

32

340

341

9

Selected BIPs with Explicit Interdependencies according to Preamble
Active (n = 2)
Draft (n = 7)

Final (n = 12)
Proposed (n = 4)

Rejected (n = 3)
Replaced (n = 1)

Withdrawn (n = 3)
requires (n = 10)

replaces (n = 3)
superseded (n = 1)

(a) Explicit BIP references from BIP2 [25] preamble.

118

374

180

342

84 155
142

338

343

375

174

135

352

20

173

372

373

21

328

129

83

345

2

350

370

327

389

146

32

340

341

9

Selected BIPs with Implicit Interdependencies found through regex search
Active (n = 2)
Draft (n = 7)

Final (n = 12)
Proposed (n = 4)

Rejected (n = 3)
Replaced (n = 1)

Withdrawn (n = 3)
regex reference (n = 69)

(b) Implicit BIP references extracted through regex-search in document.

Figure 6: IP relationship graph for BIPs.

simple method of regex extraction, we color-code the edges with their source node’s
color.

While IP relationships will only cover one of the many aspects of a holistic model
of CDV in the proposal spectrum, the graphs shown in Figure 6 already reveal first
interesting insights. For example, looking at Figure 6a, one can see that, e.g., BIP340
seems to be important as it is required by 3 other BIPs. Also worth noting is that

34

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

there has been a replacement attempt for BIP9, which still resides in ‘final’ state,
by BIP135 which itself has been rejected by the community. A similar situation can
be observed with BIP173 and BIP350, where the latter replaces the former despite
both residing in ‘final’ state. Derivatives (C3) may implement both IPs, or only one
of them, or neither, invoking particular challenges for interoperability (C4).

Even more interestingly, however, our simple analysis reveals a substantial gap
between explicitly declared dependencies and those being extracted by our regex-based
full text analysis of IP documents. Although we acknowledge that the regex-based
extraction of implicit references is a rather naive approach that may lack precision,
it reveals a substantial amount of additional interdependencies that are not captured
by the explicit references declared in the BIP’s preambles. We manually checked a
subset of the reported relationships and can confirm a considerable portion of true
positives. For example, BIP20 and BIP21 referencing each other revealed a clearly
missing preamble reference as the former “has been replaced by BIP21” [169]. Further
one can see that there exist particularly important BIPs which receive 5 or more
incoming edges. Among them BIP32, hierarchical deterministic wallets and de-facto
standard by now (cf. Section 1), as well as BIP340 and 341, both pivotal for the
latest transaction type known as Taproot [170]. Notably, BIP373, which currently
holds proposed status, exhibits seven outgoing edges. Of these, five point to final
BIPs, one to the active BIP327, and one to the proposed BIP328. This indicates
that BIP373 is a highly integrating proposal, as it builds upon multiple established
specifications. Verifying this observation in the BIP document confirms this role: it
“proposes additional fields for BIP174 PSBTv0 and BIP370 PSBTv2 that allow for
BIP327 MuSig2 Multi-Signature data to be included in a PSBT of any version”. [171]

On the one hand, our preliminary results encourage a more thorough investigation
of effective techniques for IP relationship extraction. On the other hand, having a
portfolio of different extraction techniques and comparing the IP relationship graphs
seems to be an effective method for automatically identifying inconsistencies in IP
specifications and basic anomalies in the proposal spectrum. Given Figure 6 is only
showing a small and curated subset of the entire BIP catalog, we anticipate that an
in-depth analysis at larger scale would reveal a lot of additional anomalies of different
impact levels. In the long run, we envision that such automated anomaly detection
techniques could become part of the standard tooling arsenal for ecosystem developers.

7.2.2 Starting Points for RG2 and RG3

The major task for realizing RG2 revolves around supporting IP traceability from
the proposal to the derivative spectrum. We envision retroactive IP location tech-
niques [172], as the dynamic nature of these ecosystems often hinders proactive IP
tracing. Since we cannot assume the derivatives being created through traditional
clone-and-own [12, 13], yielding sets of variants exposing only minor divergences, we
may hardly adopt set-based techniques such as Ecco [173] for this task. However, it
might be promising to evaluate the performance of feature location techniques being
capable of working with single variants only [174]. Moreover, since derivatives most

35

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

likely integrate reference libraries such as cryptographic primitives, extracting Soft-
ware Bills of Materials (SBOMs) [175] for derivatives may inform the identification of
their implemented IPs.

The most challenging part of RG3 is to support the detection of unanticipated
IP interactions impairing interoperability. While pushing the boundaries from intra-
derivative to inter-derivative interaction testing goes beyond software quality issues
addressed by software product-line testing [176], it exposes similar challenges. As
testing all the mutual IP interactions of implementation derivatives is infeasible, we
strive for novel sampling methods that enable spotting the most harmful interactions
effectively. To that end, we aim to lift existing combinatorial interaction testing strate-
gies [177] to CDV models. This allows us to systematically explore the sample space
induced by different strategies and eventually making informed decisions in balancing
efficiency and effectiveness.

Despite our specific focus on CDV, we acknowledge the substantial body of research
dedicated to interoperability and the evolution of standards across various domains.
This research primarily aims to provide comprehensive overviews of existing standards
and enhance interoperability between heterogeneous systems through standardiza-
tion [178]. Besides the aforementioned IoT domain [141–147], this includes also supply
chain management [179], eHealth systems [180], PDF viewers [181], or cloud com-
puting [182, 183]. While these efforts typically target systems with distinct business
purposes that must interoperate, they offer valuable insights that may complement
our perspective on CDV ecosystems. We see potential for mutual benefit through
methodological exchange and conceptual alignment between these research directions.

7.2.3 Research Methods and Study Subjects

Aligned with our technical goals, we adopt a design science approach, implementing
conceptual solutions as prototypes and prioritizing internal over external validity in
evaluation [184]. We will first focus on the Bitcoin ecosystem for three reasons: (1) its
large community and high degree of CDV, (2) the abundance of high-quality, openly
available data, and (3) its long history, allowing for retrospective study and simulation
of its dynamics. Next, we increase the external validity of our results by studying
other ecosystems with similar characteristics. In parallel, we will conduct qualitative
research through surveys and interviews with actors of CDV ecosystems, for further
validation and potential refinement of our problem analysis. Furthermore, we will
explore the impact of our research on ecosystems that are closely related to CDV.

36

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

8 Conclusion
Community-Driven Variability (CDV) represents an emerging form of distributed soft-
ware variability that is unexplored in current literature and transcends traditional
variability-intensive systems: Instead of a monolithic stakeholder centrally driving and
controlling all aspects of variability, a distributed community iteratively and indepen-
dently shapes the ecosystem by agreeing on a set of necessary interfaces, which forms
a constantly evolving implicit standard that strives for interoperability. This vibrant
field offers a number of relevant challenges, which become increasingly complex as the
communities grow and the ecosystems evolve.

In this paper, we provided a comprehensive definition of the five constituting char-
acteristics of CDV and applied them in the evaluation of 14 ecosystems. From the
perspective of automated software engineering, this conceptual work serves as a foun-
dational form of requirements analysis, laying the groundwork for both the automation
techniques we envision and the broader line of research that will build upon it. Our
research vision, composed of three goals, leverages feature-oriented modeling and anal-
ysis concepts as a promising starting point for systematically addressing CDV-specific
challenges. Crucially, our approach refrains from imposing conventional product-line
processes, thereby fostering methodological synergies and enabling mutual impact
across community-driven and traditional paradigms. Instead, we envision that tech-
niques from established variability paradigms can be fruitfully transferred to CDV
contexts – provided that the underlying structural and organizational characteristics
are compatible (cf. Table 1). Conversely, insights gained from CDV may inform and
enrich those paradigms. We envision such reciprocal methodological enrichment to
advance both research and practice across variability-intensive domains.

Our preliminary investigation into relationships among Bitcoin Improvement Pro-
posals (BIPs) already uncovered inconsistencies and coordination gaps (cf. Figure 6),
illustrating the pressing need for automated, systematic, and tool-supported
approaches to capture and manage the inherent complexity in CDV ecosystems.
We thus invite the software engineering community to engage with the challenges
and opportunities posed by CDV. Advancing our understanding, modeling capabil-
ities, and support mechanisms for CDV ecosystems will improve current practice
and contribute to a broader rethinking of variability in open, collaborative software
development contexts.

Acknowledgements. This work is supported by the Swiss National Science
Foundation (SNSF) under grants 219719 and 222903.

37

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

References
[1] Parnas, D.L.: On the design and development of program families. IEEE Trans.

on Software Engineering (TSE) (1), 1–9 (1976)

[2] Pohl, K., Böckle, G., Linden, F.J.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer (2005). https://doi.org/10.1007/
3-540-28901-1

[3] Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Prod-
uct Lines - Concepts and Implementation. Springer (2013). https://doi.org/10
.1007/978-3-642-37521-7

[4] Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: Proc.
Int’l Systems and Software Product Line Conf. (SPLC), vol. 3714, pp. 7–20.
Springer (2005). https://doi.org/10.1007/11554844_3

[5] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

[6] Svahnberg, M., Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques. Software: Practice and Experience 35(8), 705–754 (2005) https:
//doi.org/10.1002/SPE.652

[7] Eggert, M., Günther, K., Maletschek, J., Maxiniuc, A., Mann-Wahrenberg, A.:
In three steps to software product lines: a practical example from the automotive
industry. In: Proc. Int’l Systems and Software Product Line Conf. (SPLC), pp.
170–177. Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3546932.3547003

[8] Habli, I., Kelly, T., Hopkins, I.: Challenges of Establishing a Software Product
Line for an Aerospace Engine Monitoring System. In: Proc. Int’l Systems and
Software Product Line Conf. (SPLC), pp. 193–202 (2007). https://doi.org/10.1
109/SPLINE.2007.37

[9] Abbas, M., Jongeling, R., Lindskog, C., Enoiu, E.P., Saadatmand, M., Sund-
mark, D.: Product line adoption in industry: an experience report from the
railway domain. In: Proc. Int’l Systems and Software Product Line Conf.
(SPLC), pp. 3–1311. ACM (2020). https://doi.org/10.1145/3382025.3414953

[10] Myllärniemi, V., Savolainen, J., Männistö, T.: Performance variability in soft-
ware product lines: a case study in the telecommunication domain. In: Proc.
Int’l Systems and Software Product Line Conf. (SPLC), pp. 32–41. ACM (2013).
https://doi.org/10.1145/2491627.2491631

38

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/11554844_3
https://doi.org/10.1002/SPE.652
https://doi.org/10.1002/SPE.652
https://doi.org/10.1145/3546932.3547003
https://doi.org/10.1109/SPLINE.2007.37
https://doi.org/10.1109/SPLINE.2007.37
https://doi.org/10.1145/3382025.3414953
https://doi.org/10.1145/2491627.2491631

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[11] She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The Variability
Model of The Linux Kernel. In: Proc. Int’l Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS), vol. 37, pp. 45–51. Universität Duisburg-
Essen (2010)

[12] Rubin, J., Czarnecki, K., Chechik, M.: Managing Cloned Variants: A Frame-
work and Experience. In: Proc. Int’l Systems and Software Product Line Conf.
(SPLC), pp. 101–110. ACM (2013). https://doi.org/10.1145/2491627.2491644

[13] Kehrer, T., Thüm, T., Schultheiß, A., Bittner, P.M.: Bridging the Gap Between
Clone-and-Own and Software Product Lines. In: Proc. Int’l Conf. on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 21–25. IEEE
(2021). https://doi.org/10.1109/ICSE-NIER52604.2021.00013

[14] Schmorleiz, T., Lämmel, R.: Similarity Management via History Annotation. In:
Proc. Seminar on Advanced Techniques and Tools for Software Evolution (SAT-
ToSE), pp. 45–48. Dipartimento di Informatica Università degli Studi dell’Aquila
(2014)

[15] Wang, L., Zheng, Z., Wu, X., Sang, B., Zhang, J., Tao, X.: Fork Entropy:
Assessing the Diversity of Open Source Software Projects’ Forks. In: Proc.
Int’l Conf. on Automated Software Engineering (ASE), pp. 204–216 (2023).
https://doi.org/10.1109/ASE56229.2023.00168

[16] Krüger, J., Mukelabai, M., Gu, W., Shen, H., Hebig, R., Berger, T.: Where Is
My Feature and What Is It About? A Case Study on Recovering Feature Facets.
J. Systems and Software (JSS) 152, 239–253 (2019) https://doi.org/10.1016/J.
JSS.2019.01.057

[17] Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability Extraction and Mod-
eling for Product Variants. Software and System Modeling (SoSyM) 16(4),
1179–1199 (2017) https://doi.org/10.1007/S10270-015-0512-Y

[18] Klatt, B., Küster, M., Krogmann, K.: A Graph-Based Analysis Concept to
Derive a Variation Point Design From Product Copies. In: Proc. Int’l Workshop
on Reverse Variability Engineering (REVE), pp. 1–8 (2013)

[19] Kästner, C., Dreiling, A., Ostermann, K.: Variability Mining: Consistent Semi-
automatic Detection of Product-Line Features. IEEE Trans. on Software
Engineering (TSE) 40(1), 67–82 (2014) https://doi.org/10.1109/TSE.2013.45

[20] Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up adop-
tion of software product lines: a generic and extensible approach. In: Proc. Int’l
Systems and Software Product Line Conf. (SPLC), pp. 101–110. ACM (2015).
https://doi.org/10.1145/2791060.2791086

39

https://doi.org/10.1145/2491627.2491644
https://doi.org/10.1109/ICSE-NIER52604.2021.00013
https://doi.org/10.1109/ASE56229.2023.00168
https://doi.org/10.1016/J.JSS.2019.01.057
https://doi.org/10.1016/J.JSS.2019.01.057
https://doi.org/10.1007/S10270-015-0512-Y
https://doi.org/10.1109/TSE.2013.45
https://doi.org/10.1145/2791060.2791086

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[21] Fenske, W., Meinicke, J., Schulze, S., Schulze, S., Saake, G.: Variant-Preserving
Refactorings for Migrating Cloned Products to a Product Line. In: Proc. Int’l
Conf. on Software Analysis, Evolution and Reengineering (SANER), pp. 316–
326. IEEE (2017). https://doi.org/10.1109/SANER.2017.7884632

[22] Rosu, C., Togan, M.: A Modern Paradigm for Effective Software Development:
Feature Toggle Systems. In: Int’l Conf. on Electronics, Computers and Artificial
Intelligence (ECAI), pp. 1–6. IEEE (2023). https://doi.org/10.1109/ECAI5819
4.2023.10193936

[23] Mahdavi-Hezaveh, R., Dremann, J., Williams, L.A.: Software development with
feature toggles: practices used by practitioners. Empirical Software Engineering
(EMSE) 26(1), 1 (2021) https://doi.org/10.1007/S10664-020-09901-Z

[24] Krüger, J., Berger, T.: An Empirical Analysis of the Costs of Clone- and
Platform-Oriented Software Reuse. In: Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pp. 432–444. ACM
(2020). https://doi.org/10.1145/3368089.3409684

[25] Dashjr, L.: BIP2: BIP Process, Revised. https://bips.dev/2 Accessed 2025-01-16

[26] Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https:
//bitcoin.org/bitcoin.pdf

[27] Bitcoin Improvement Proposals (BIPs). https://github.com/bitcoin/bips
Accessed 2025-01-16

[28] Benet, J.: IPFS - Content Addressed, Versioned, P2P File System. arXiv (2014).
https://doi.org/10.48550/arXiv.1407.3561

[29] InterPlanetary Improvement Proposals (IPIPs). https://specs.ipfs.tech/ipips
Accessed 2025-01-16

[30] Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The Second-Generation
Onion Router. In: Proc. USENIX Security Symposium, pp. 303–320. USENIX
(2004)

[31] Tor Design Proposals. https://spec.torproject.org/proposals/index.html
Accessed 2025-01-16

[32] nostr-protocol/nostr. nostr-protocol. https://github.com/nostr-protocol/nostr
Accessed 2024-12-16

[33] Nostr Implementation Possibilities (NIPs). https://github.com/nostr-protocol/
nips Accessed 2025-01-16

40

https://doi.org/10.1109/SANER.2017.7884632
https://doi.org/10.1109/ECAI58194.2023.10193936
https://doi.org/10.1109/ECAI58194.2023.10193936
https://doi.org/10.1007/S10664-020-09901-Z
https://doi.org/10.1145/3368089.3409684
https://bips.dev/2
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips
https://doi.org/10.48550/arXiv.1407.3561
https://specs.ipfs.tech/ipips
https://spec.torproject.org/proposals/index.html
https://github.com/nostr-protocol/nostr
https://github.com/nostr-protocol/nips
https://github.com/nostr-protocol/nips

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[34] Erhardt, M.: Re: [Bitcoindev] Time for an Update to BIP2? Accessed: 2025-01-
16 (2024). https://mailing-list.bitcoindevs.xyz/bitcoindev/82a37738-a17b-4a8
c-9651-9e241118a363@murch.one

[35] Amichateur: [Awareness/Proposal] The Multitude of Different "Derivation
Paths" in BIP32 Bitcoin Wallets Causes Incompatibility All Around When It
Comes to Wallet Seed Restore Operation for Non-Tech-Savy Users. r/Bitcoin.
https://www.reddit.com/r/Bitcoin/comments/qeu3j7/awarenessproposal_the
_multitude_of_different/ Accessed 2025-01-16

[36] Wuille, P.: BIP32: Hierarchical Deterministic Wallets. https://bips.dev/32
Accessed 2025-01-16

[37] Questions Tagged [bip32-hd-wallets]. Bitcoin Stack Exchange. https://bitcoin.
stackexchange.com/questions/tagged/bip32-hd-wallets Accessed 2025-01-16

[38] Wallets Recovery - Bitcoin Wallet Seeds Recovery Guide. https://walletsrecov
ery.org/ Accessed 2025-07-20

[39] Bitcoin Optech: Compatibility Matrix. https://bitcoinops.org/en/compatibility
Accessed 2025-01-16

[40] Choose Your Wallet. Bitcoin.org. https://bitcoin.org/en/choose-your-wallet
Accessed 2025-01-16

[41] Know Your Wallet Like You Built It. WalletScrutiny. https://walletscrutiny.com
Accessed 2025-01-16

[42] Software Wallets: Comparing 25 Bitcoin Software Wallets Feature by Feature.
The Bitcoin Hole. https://thebitcoinhole.com/sof tware-wallets Accessed
2025-07-20

[43] Bögli, R.: A Security Focused Outline on Bitcoin Wallets. Eastern Switzerland
University of Applied Science (OST) (2023). https://eprints.ost.ch/id/eprint/1
103/

[44] Bögli, R., Boll, A., Schultheiß, A., Kehrer, T.: Beyond Software Families:
Community-Driven Variability. In: Companion Proc. Foundations of Software
Engineering (FSE), pp. 571–575. ACM (2025). https://doi.org/10.1145/369663
0.3728501

[45] Mistrík, I., Galster, M., Maxim, B.R. (eds.): Software Engineering for Variability
Intensive Systems - Foundations and Applications. Auerbach Publications /
Taylor & Francis (2019). https://doi.org/10.1201/9780429022067

[46] Dijkstra, E.W.: The Humble Programmer. Communications of the ACM 15(10),
859–866 (1972) https://doi.org/10.1145/355604.361591

41

https://mailing-list.bitcoindevs.xyz/bitcoindev/82a37738-a17b-4a8c-9651-9e241118a363@murch.one
https://mailing-list.bitcoindevs.xyz/bitcoindev/82a37738-a17b-4a8c-9651-9e241118a363@murch.one
https://www.reddit.com/r/Bitcoin/comments/qeu3j7/awarenessproposal_the_multitude_of_different/
https://www.reddit.com/r/Bitcoin/comments/qeu3j7/awarenessproposal_the_multitude_of_different/
https://bips.dev/32
https://bitcoin.stackexchange.com/questions/tagged/bip32-hd-wallets
https://bitcoin.stackexchange.com/questions/tagged/bip32-hd-wallets
https://walletsrecovery.org/
https://walletsrecovery.org/
https://bitcoinops.org/en/compatibility
https://bitcoin.org/en/choose-your-wallet
https://walletscrutiny.com
https://thebitcoinhole.com/software-wallets
https://eprints.ost.ch/id/eprint/1103/
https://eprints.ost.ch/id/eprint/1103/
https://doi.org/10.1145/3696630.3728501
https://doi.org/10.1145/3696630.3728501
https://doi.org/10.1201/9780429022067
https://doi.org/10.1145/355604.361591

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[47] Lehman, M.M.: Laws of Software Evolution Revisited. In: Proc. European
Workshop on Software Process Technology (EWSPT), vol. 1149, pp. 108–124.
Springer (1996). https://doi.org/10.1007/BFB0017737

[48] Ananieva, S., Greiner, S., Kehrer, T., Krüger, J., Kühn, T., Linsbauer, L.,
Grüner, S., Koziolek, A., Lönn, H., Ramesh, S., Reussner, R.H.: A conceptual
model for unifying variability in space and time: Rationale, validation, and illus-
trative applications. Empirical Software Engineering (EMSE) 27(5), 101 (2022)
https://doi.org/10.1007/S10664-021-10097-Z

[49] Stănciulescu, Ş., Schulze, S., Wasowski, A.: Forked and Integrated Variants in
an Open-Source Firmware Project. In: Koschke, R., Krinke, J., Robillard, M.P.
(eds.) Proc. Int’l Conf. on Software Maintenance and Evolution (ICSME), pp.
151–160. IEEE (2015). https://doi.org/10.1109/ICSM.2015.7332461

[50] Rowe, D., Leaney, J., Lowe, D.: Defining Systems Evolvability - A Taxonomy
of Change. In: Proc. Int’l Conf. on Engineering of Computer-Based Systems
(ECBS), pp. 45–52. IEEE (1998). https://doi.org/10.1109/ECBS.1998.10027

[51] Breivold, H.P., Crnkovic, I., Eriksson, P.: Evaluating Software Evolvability.
Software Engineering Research and Practice in Sweden 96 (2007)

[52] Zave, P.: An experiment in feature engineering. In: McIver, A., Morgan, C. (eds.)
Programming Methodology. Monographs in Computer Science, pp. 353–377.
Springer, New York (2003). https://doi.org/10.1007/978-0-387-21798-7_17

[53] Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement.
IEEE Trans. on Software Engineering (TSE) 30(6), 355–371 (2004) https:
//doi.org/10.1109/TSE.2004.23

[54] Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A Classification and
Survey of Analysis Strategies for Software Product Lines. ACM Computing
Surveys (CSUR) 47(1), 6–1645 (2014) https://doi.org/10.1145/2580950

[55] Berger, T., Chechik, M., Kehrer, T., Wimmer, M.: Software Evolution in Time
and Space: Unifying Version and Variability Management (Dagstuhl Seminar
19191). Dagstuhl Reports 9(5), 1–30 (2019) https://doi.org/10.4230/DAGREP
.9.5.1

[56] Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A Survey of Distributed Consensus
Protocols for Blockchain Networks. IEEE Communications Surveys & Tutorials
22(2), 1432–1465 (2020) https://doi.org/10.1109/COMST.2020.2969706

[57] craigraw: Sparrow Bitcoin Wallet. https://sparrowwallet.com/features Accessed
2025-01-16

42

https://doi.org/10.1007/BFB0017737
https://doi.org/10.1007/S10664-021-10097-Z
https://doi.org/10.1109/ICSM.2015.7332461
https://doi.org/10.1109/ECBS.1998.10027
https://doi.org/10.1007/978-0-387-21798-7_17
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1145/2580950
https://doi.org/10.4230/DAGREP.9.5.1
https://doi.org/10.4230/DAGREP.9.5.1
https://doi.org/10.1109/COMST.2020.2969706
https://sparrowwallet.com/features

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[58] Palatinus, M., Rusnak, P., Aaron, V., Bowe, S.: BIP39: Mnemonic Code for
Generating Deterministic Keys. https://bips.dev/39 Accessed 2025-01-16

[59] Electrum Bitcoin Wallet. https://electrum.org Accessed 2025-01-16

[60] SatoshiLabs: SatoshiLabs Improvement Proposals (SLIPs). https://github.com
/satoshilabs/slips Accessed 2025-01-16

[61] scgbckbone: Commit 829afcc “change BIP39 Status to Final”. bitcoin/bips on
GitHub. https://github.com/bitcoin/bips/commit/829afccd1ae26403f8c3583
d7347b04aeb54c2ca Accessed 2025-07-19

[62] Electrum Seed Version System. https://electrum.readthedocs.io/en/latest/seed
phrase.html Accessed 2025-01-16

[63] Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments (2016). https://lightning.network/lightning-network-paper.pdf

[64] Basis of Lightning Technology (BOLT). https://github.com/lightning/bolts
Accessed 2025-01-16

[65] Bitcoin Lightning Improvement Proposals (bLIPs). https://github.com/lightni
ng/blips Accessed 2025-01-16

[66] Buterin, V., et al.: Ethereum Whitepaper (2014). https://ethereum.org/en/wh
itepaper Accessed 2025-01-16

[67] Ethereum Improvement Proposals (EIPs). https://eips.ethereum.org Accessed
2025-01-16

[68] Torvalds, L., et al.: Linux Kernel Source Tree. Website: https://github.com/t
orvalds/linux. Accessed: 2025-07-12

[69] Torvalds, L., et al.: The Linux Kernel Archives. Website: https://www.kernel.o
rg/linux.html. Accessed: 2025-07-12

[70] AISBL, E.F.: Eclipse. Website: https://www.eclipse.org/home/whatis/.
Accessed: 2025-07-12

[71] Andersen, E., Vlasenko, D., et al.: BusyBox: The Swiss Army Knife of Embedded
Linux. Website: https://busybox.net/about.html. Accessed: 2025-07-12

[72] Aporius, D.: Apo-Games. Website: https://www.apo-games.de/. Accessed:
2025-07-12

[73] Lahteine, S., et al.: Marlin Firmware. Website: https://marlinfw.org/docs/basi
cs/introduction.html. Accessed: 2025-07-12

43

https://bips.dev/39
https://electrum.org
https://github.com/satoshilabs/slips
https://github.com/satoshilabs/slips
https://github.com/bitcoin/bips/commit/829afccd1ae26403f8c3583d7347b04aeb54c2ca
https://github.com/bitcoin/bips/commit/829afccd1ae26403f8c3583d7347b04aeb54c2ca
https://electrum.readthedocs.io/en/latest/seedphrase.html
https://electrum.readthedocs.io/en/latest/seedphrase.html
https://lightning.network/lightning-network-paper.pdf
https://github.com/lightning/bolts
https://github.com/lightning/blips
https://github.com/lightning/blips
https://ethereum.org/en/whitepaper
https://ethereum.org/en/whitepaper
https://eips.ethereum.org
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://www.kernel.org/linux.html
https://www.kernel.org/linux.html
https://www.eclipse.org/home/whatis/
https://busybox.net/about.html
https://www.apo-games.de/
https://marlinfw.org/docs/basics/introduction.html
https://marlinfw.org/docs/basics/introduction.html

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[74] Soares, S., Borba, P., Laureano, E.: Distribution and persistence as aspects.
Software: Practice and Experience 36(7), 711–759 (2006) https://doi.org/10.1
002/SPE.715

[75] Documentation. Home Assistant. https://www.home-assistant.io/docs Accessed
2025-01-16

[76] Python. https://python.org Accessed 2025-01-16

[77] Python Enhancement Proposals (PEPs). https://peps.python.org Accessed
2025-01-16

[78] lnurl/luds. https://github.com/lnurl/luds Accessed 2025-07-17

[79] lightningnetwork/lnd. https://github.com/lightningnetwork/lnd Accessed
2025-07-15

[80] ACINQ/Eclair. https://github.com/ACINQ/eclair Accessed 2025-07-15

[81] ElementsProject/lightning. https://github.com/ElementsProject/lightning
Accessed 2025-07-15

[82] BOLT9: Assigned Feature Flags. https://github.com/lightning/bolts/blob/ma
ster/09-features.md Accessed 2025-01-16

[83] van der Wijden, M., Lange, F., Rong, G.: EIP-4938: Eth/67 - Removal of
GetNodeData. https://eips.ethereum.org/EIPS/eip-4938 Accessed 2025-07-16

[84] DuPont, Q.: Experiments in Algorithmic Governance: A History and Ethnog-
raphy of “The DAO,” a Failed Decentralized Autonomous Organization. In:
Campbell-Verduyn, M. (ed.) Bitcoin and Beyond, pp. 157–177. Routledge
(2017). Chap. 8. https://doi.org/10.4324/9781315211909-9

[85] ethereum/go-ethereum. https://github.com/ethereum/go-ethereum Accessed
2025-07-16

[86] MetaMask/metamask-extension. https://github.com/MetaMask/metamask-e
xtension Accessed 2025-07-16

[87] ProjectOpenSea/Seaport. https://github.com/ProjectOpenSea/seaport
Accessed 2025-07-16

[88] ISO/IEC 7498-1:1994, Information Technology - Open Systems Interconnection
- Basic Reference Model: The Basic Model. https://www.iso.org/standard/202
69.html

[89] Argentieri, M.: NIP46 Nostr Remote Signing. https://github.com/nostr-proto
col/nips/blob/master/46.md Accessed 2025-09-02

44

https://doi.org/10.1002/SPE.715
https://doi.org/10.1002/SPE.715
https://www.home-assistant.io/docs
https://python.org
https://peps.python.org
https://github.com/lnurl/luds
https://github.com/lightningnetwork/lnd
https://github.com/ACINQ/eclair
https://github.com/ElementsProject/lightning
https://github.com/lightning/bolts/blob/master/09-features.md
https://github.com/lightning/bolts/blob/master/09-features.md
https://eips.ethereum.org/EIPS/eip-4938
https://doi.org/10.4324/9781315211909-9
https://github.com/ethereum/go-ethereum
https://github.com/MetaMask/metamask-extension
https://github.com/MetaMask/metamask-extension
https://github.com/ProjectOpenSea/seaport
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html
https://github.com/nostr-protocol/nips/blob/master/46.md
https://github.com/nostr-protocol/nips/blob/master/46.md

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[90] Miller, P., Staab, J.: NIP44 Encrypted Payloads (Versioned). https://github.c
om/nostr-protocol/nips/blob/master/44.md Accessed 2025-09-02

[91] Castillo, M.: Meet @Fiatjaf, The Mysterious Nostr Creator Who Has Lured 18
Million Users And $5 Million From Jack Dorsey. https://www.forbes.com/sit
es/digital-assets/2023/05/30/bitcoin-social-network-nostr-creator-f iatjaf-/
Accessed 2025-07-16

[92] sandwichfarm/nostr-watch: A NIP-66 Nostr Client for Browsing Nostr Relays.
https://github.com/sandwichfarm/nostr-watch Accessed 2025-07-14

[93] aljazceru/Awesome-Nostr. https://github.com/aljazceru/awesome-nostr
Accessed 2025-07-14

[94] Explore Nostr Apps. https://nostrapps.com/ Accessed 2025-07-14

[95] Tor Browser. GitLab. https://gitlab.torproject.org/tpo/applications/tor-brows
er Accessed 2025-07-17

[96] Perry, M.: 324-Rtt-Congestion-Control (2020). https://spec.torproject.org/pr
oposals/324-rtt-congestion-control.html Accessed 2025-07-17

[97] Perry, M.: 291-Two-Guard-Nodes (2018). https://spec.torproject.org/proposal
s/291-two-guard-nodes.html Accessed 2025-07-17

[98] The Open Database Of The Corporate World: THE TOR PROJECT, INC. ht
tps://opencorporates.com/companies/us_ma/208096820 Accessed 2025-07-17

[99] The Tor Project. GitLab. https://gitlab.torproject.org/tpo Accessed 2025-07-18

[100] Mathewson, N.: 264-Subprotocol-Versions - Tor Design Proposals (2016). https:
//spec.torproject.org/proposals/264-subprotocol-versions.html Accessed
2025-07-17

[101] Mathewson, N.: 346-Protovers-Again - Tor Design Proposals (2023). https://sp
ec.torproject.org/proposals/346-protovers-again.html Accessed 2025-07-17

[102] Doan, T.V., Psaras, Y., Ott, J., Bajpai, V.: Toward Decentralized Cloud Stor-
age With IPFS: Opportunities, Challenges, and Future Considerations. IEEE
Internet Computing 26(6), 7–15 (2022) https://doi.org/10.1109/MIC.2022.320
9804

[103] Protocol Labs. https://protocol.ai/ Accessed 2025-07-17

[104] ipfs/Kubo. IPFS Project. https://github.com/ipfs/kubo Accessed 2025-07-17

[105] ipfs/Helia. IPFS Project. https://github.com/ipfs/helia Accessed 2025-07-17

45

https://github.com/nostr-protocol/nips/blob/master/44.md
https://github.com/nostr-protocol/nips/blob/master/44.md
https://www.forbes.com/sites/digital-assets/2023/05/30/bitcoin-social-network-nostr-creator-fiatjaf-/
https://www.forbes.com/sites/digital-assets/2023/05/30/bitcoin-social-network-nostr-creator-fiatjaf-/
https://github.com/sandwichfarm/nostr-watch
https://github.com/aljazceru/awesome-nostr
https://nostrapps.com/
https://gitlab.torproject.org/tpo/applications/tor-browser
https://gitlab.torproject.org/tpo/applications/tor-browser
https://spec.torproject.org/proposals/324-rtt-congestion-control.html
https://spec.torproject.org/proposals/324-rtt-congestion-control.html
https://spec.torproject.org/proposals/291-two-guard-nodes.html
https://spec.torproject.org/proposals/291-two-guard-nodes.html
https://opencorporates.com/companies/us_ma/208096820
https://opencorporates.com/companies/us_ma/208096820
https://gitlab.torproject.org/tpo
https://spec.torproject.org/proposals/264-subprotocol-versions.html
https://spec.torproject.org/proposals/264-subprotocol-versions.html
https://spec.torproject.org/proposals/346-protovers-again.html
https://spec.torproject.org/proposals/346-protovers-again.html
https://doi.org/10.1109/MIC.2022.3209804
https://doi.org/10.1109/MIC.2022.3209804
https://protocol.ai/
https://github.com/ipfs/kubo
https://github.com/ipfs/helia

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[106] ipfs/awesome-ipfs: Community List of Awesome Projects, Apps, Tools, Pinning
Services and More Related To IPFS. https://github.com/ipfs/awesome-ipfs/tr
ee/main Accessed 2025-07-17

[107] Krueger, C.W.: Easing the Transition to Software Mass Customization. In: Lin-
den, F. (ed.) Proc. Int’l Workshop on Software Product-Family Engineering
(PFE), vol. 2290, pp. 282–293. Springer (2001). https://doi.org/10.1007/3-540
-47833-7_25

[108] Kconfig Language. The Linux Kernel documentation. https://www.kernel.org
/doc/html/next/kbuild/kconfig-language.html Accessed 2025-07-21

[109] Sincero, J., Schirmeier, H., Schröder-Preikschat, W., Spinczyk, O.: Is the Linux
Kernel a Software Product Line? In: Proc. Int’l Workshop on Open Source
Software and Product Lines (OSSPL), pp. 9–12. IEEE (2007)

[110] Abal, I., Melo, J., Stănciulescu, Ş., Brabrand, C., Ribeiro, M., Wasowski, A.:
Variability Bugs in Highly Configurable Systems: A Qualitative Analysis. Trans.
on Software Engineering and Methodology (TOSEM) 26(3), 10–11034 (2018)
https://doi.org/10.1145/3149119

[111] Mortara, J., Collet, P.: Capturing the Diversity of Analyses on the Linux Kernel
Variability. In: Proc. Int’l Systems and Software Product Line Conf. (SPLC),
pp. 160–171. ACM (2021). https://doi.org/10.1145/3461001.3471151

[112] Franz, P., Berger, T., Fayaz, I., Nadi, S., Groshev, E.: ConfigFix: Interactive
Configuration Conflict Resolution for the Linux Kernel. In: Proc. Int’l Conf.
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp.
91–100. IEEE (2021). https://doi.org/10.1109/ICSE-SEIP52600.2021.00018

[113] Kuiter, E., Sundermann, C., Thüm, T., Hess, T., Krieter, S., Saake, G.: How
Configurable is the Linux Kernel? Analyzing Two Decades of Feature-Model
History. Trans. on Software Engineering and Methodology (TOSEM) (2025)
https://doi.org/10.1145/3729423

[114] Eclipse Foundation. Eclipse Foundation. https://www.eclipse.org/home/
Accessed 2025-07-03

[115] Gurp, J., Prehofer, C., Bosch, J.: Comparing practices for reuse in integration-
oriented software product lines and large open source software projects. Soft-
ware: Practice and Experience 40(4), 285–312 (2010) https://doi.org/10.1002/
SPE.955

[116] Pleuss, A., Botterweck, G., Dhungana, D., Polzer, A., Kowalewski, S.: Model-
driven support for product line evolution on feature level. J. Systems and
Software (JSS) 85(10), 2261–2274 (2012) https://doi.org/10.1016/J.JSS.2011.0
8.008

46

https://github.com/ipfs/awesome-ipfs/tree/main
https://github.com/ipfs/awesome-ipfs/tree/main
https://doi.org/10.1007/3-540-47833-7_25
https://doi.org/10.1007/3-540-47833-7_25
https://www.kernel.org/doc/html/next/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/next/kbuild/kconfig-language.html
https://doi.org/10.1145/3149119
https://doi.org/10.1145/3461001.3471151
https://doi.org/10.1109/ICSE-SEIP52600.2021.00018
https://doi.org/10.1145/3729423
https://www.eclipse.org/home/
https://doi.org/10.1002/SPE.955
https://doi.org/10.1002/SPE.955
https://doi.org/10.1016/J.JSS.2011.08.008
https://doi.org/10.1016/J.JSS.2011.08.008

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[117] Ahmed, F., Capretz, L.F., Babar, M.A.: A Model of Open Source Software-
Based Product Line Development. In: Proc. on Computer Software and Appli-
cations Conf. (COMPSAC), pp. 1215–1220. IEEE (2008). https://doi.org/10.1
109/COMPSAC.2008.126

[118] Heider, W., Rabiser, R., Grünbacher, P.: Facilitating the evolution of products
in product line engineering by capturing and replaying configuration decisions.
Int’l J. Software Tools for Technology Transfer (STTT) 14(5), 613–630 (2012)
https://doi.org/10.1007/S10009-012-0229-Y

[119] Cervantes, H., Charleston-Villalobos, S.: Using a lightweight workflow engine
in a plugin-based product line architecture. In: Proc. of the Int’l Symposium
on Component-Based Software Engineering (CBSE), vol. 4063, pp. 198–205.
Springer (2006). https://doi.org/10.1007/11783565_14

[120] Schultheiß, A., Bittner, P.M., Thüm, T., Kehrer, T.: Quantifying the Potential
to Automate the Synchronization of Variants in Clone-and-Own. In: Proc. Int’l
Conf. on Software Maintenance and Evolution (ICSME), pp. 269–280. IEEE
(2022). https://doi.org/10.1109/ICSME55016.2022.00032

[121] Wang, A., Feng, N., Chechik, M.: Code-Level Functional Equivalence Checking
of Annotative Software Product Lines. In: Proc. Int’l Systems and Software
Product Line Conf. (SPLC), pp. 64–75. ACM (2023). https://doi.org/10.1145/
3579027.3608978

[122] Pett, T., Krieter, S., Runge, T., Thüm, T., Lochau, M., Schaefer, I.: Stability of
Product-Line Sampling in Continuous Integration. In: Proc. Int’l Working Conf.
on Variability Modelling of Software-Intensive Systems (VaMoS). ACM (2021).
https://doi.org/10.1145/3442391.3442410

[123] Friesel, B., Müller, M., Ferraz, M.F., Spinczyk, O.: On the Relation of Variability
Modeling Languages and Non-Functional Properties. In: Proc. Int’l Systems
and Software Product Line Conf. (SPLC), pp. 140–144. ACM (2022). https:
//doi.org/10.1145/3503229.3547055

[124] Pett, T., Krieter, S., Thüm, T., Schaefer, I.: MulTi-Wise Sampling: Trading
Uniform T-Wise Feature Interaction Coverage for Smaller Samples. In: Proc.
Int’l Systems and Software Product Line Conf. (SPLC), pp. 47–53. ACM (2024).
https://doi.org/10.1145/3646548.3672589

[125] Bombarda, A., Gargantini, A.: On the Use of Multi-valued Decision Diagrams
to Count Valid Configurations of Feature Models. In: Proc. Int’l Systems and
Software Product Line Conf. (SPLC), pp. 96–106. ACM (2024). https://doi.or
g/10.1145/3646548.3672594

47

https://doi.org/10.1109/COMPSAC.2008.126
https://doi.org/10.1109/COMPSAC.2008.126
https://doi.org/10.1007/S10009-012-0229-Y
https://doi.org/10.1007/11783565_14
https://doi.org/10.1109/ICSME55016.2022.00032
https://doi.org/10.1145/3579027.3608978
https://doi.org/10.1145/3579027.3608978
https://doi.org/10.1145/3442391.3442410
https://doi.org/10.1145/3503229.3547055
https://doi.org/10.1145/3503229.3547055
https://doi.org/10.1145/3646548.3672589
https://doi.org/10.1145/3646548.3672594
https://doi.org/10.1145/3646548.3672594

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[126] Krüger, J., Fenske, W., Thüm, T., Aporius, D., Saake, G., Leich, T.: Apo-Games:
A Case Study for Reverse Engineering Variability From Cloned Java Variants.
In: Proc. Int’l Systems and Software Product Line Conf. (SPLC), pp. 251–256.
ACM (2018). https://doi.org/10.1145/3233027.3236403

[127] Kim, T., Lee, J., Kang, S.: Cloned Code Clustering for the Software Product
Line Engineering Approach to Developing a Family of Products. In: Proc. on
Computer Software and Applications Conf. (COMPSAC), pp. 1350–1355. IEEE
(2024). https://doi.org/10.1109/COMPSAC61105.2024.00178

[128] Marchezan, L., Assunção, W.K.G., Michelon, G.K., Herac, E., Egyed, A.: Code
Smell Analysis in Cloned Java Variants: The Apo-Games Case Study. In: Proc.
Int’l Systems and Software Product Line Conf. (SPLC), pp. 250–254. ACM
(2022). https://doi.org/10.1145/3546932.3547015

[129] Debbiche, J., Lignell, O., Krüger, J., Berger, T.: Migrating Java-Based Apo-
Games into a Composition-Based Software Product Line. In: Proc. Int’l Systems
and Software Product Line Conf. (SPLC), pp. 98–102. ACM (2019). https:
//doi.org/10.1145/3336294.3342361

[130] Åkesson, J., Nilsson, S., Krüger, J., Berger, T.: Migrating the Android Apo-
Games Into an Annotation-Based Software Product Line. In: Proc. Int’l Systems
and Software Product Line Conf. (SPLC), pp. 103–107. ACM (2019). https:
//doi.org/10.1145/3336294.3342362

[131] Schultheiß, A., Bittner, P.M., Boll, A., Grunske, L., Thüm, T., Kehrer, T.:
RaQuN: A Generic and Scalable N-Way Model Matching Algorithm. Software
and System Modeling (SoSyM) 22, 1495–1517 (2023) https://doi.org/10.1007/
S10270-022-01062-5

[132] Zhou, S., Vasilescu, B., Kästner, C.: What the Fork: A Study of Inefficient
and Efficient Forking Practices in Social Coding. In: Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE), pp. 350–
361. ACM (2019). https://doi.org/10.1145/3338906.3338918

[133] Krüger, J., Gu, W., Shen, H., Mukelabai, M., Hebig, R., Berger, T.: Towards a
Better Understanding of Software Features and Their Characteristics: A Case
Study of Marlin. In: Proc. Int’l Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS), pp. 105–112. ACM (2018). https://doi.org/10.114
5/3168365.3168371

[134] Stănciulescu, Ş., Rabiser, D., Seidl, C.: A Technology-Neutral Role-Based Col-
laboration Model for Software Ecosystems. In: Proc. Int’l Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA), vol.
9953, pp. 512–530 (2016). https://doi.org/10.1007/978-3-319-47169-3_41

48

https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1109/COMPSAC61105.2024.00178
https://doi.org/10.1145/3546932.3547015
https://doi.org/10.1145/3336294.3342361
https://doi.org/10.1145/3336294.3342361
https://doi.org/10.1145/3336294.3342362
https://doi.org/10.1145/3336294.3342362
https://doi.org/10.1007/S10270-022-01062-5
https://doi.org/10.1007/S10270-022-01062-5
https://doi.org/10.1145/3338906.3338918
https://doi.org/10.1145/3168365.3168371
https://doi.org/10.1145/3168365.3168371
https://doi.org/10.1007/978-3-319-47169-3_41

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[135] Linsbauer, L., Berger, T., Grünbacher, P.: A Classification of Variation Control
Systems. In: Proc. Int’l Conf. on Generative Programming: Concepts & Expe-
riences (GPCE), pp. 49–62. ACM (2017). https://doi.org/10.1145/3136040.31
36054

[136] Shatnawi, A., Seriai, A., Sahraoui, H.A.: Recovering Architectural Variability of
a Family of Product Variants. In: Proc. Int’l Conf. on Software Reuse (ICSR),
vol. 8919, pp. 17–33. Springer (2015). https://doi.org/10.1007/978-3-319-14130
-5_2

[137] Shatnawi, A., Seriai, A., Sahraoui, H.A.: Recovering Software Product Line
Architecture of a Family of Object-Oriented Product Variants. J. Systems and
Software (JSS) 131, 325–346 (2017) https://doi.org/10.1016/J.JSS.2016.07.039

[138] Shatnawi, A., Seriai, A., Sahraoui, H.A., Ziadi, T., Seriai, A.: ReSIde: Reusable
Service Identification from Software Families. J. Systems and Software (JSS)
170, 110748 (2020) https://doi.org/10.1016/J.JSS.2020.110748

[139] Lima, C., Machado, I., Galster, M., Flach G. Chavez, C.: Recovering Architec-
tural Variability from Source Code. In: Proc. Brazilian Symposium on Software
Engineering (SBES), pp. 808–817. ACM (2020). https://doi.org/10.1145/3422
392.3422399

[140] Greenwood, P., Bartolomei, T.T., Figueiredo, E., Dósea, M., Garcia, A.F.,
Cacho, N., Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the
Impact of Aspectual Decompositions on Design Stability: An Empirical Study.
In: Proc. Europ. Conf. on Object-Oriented Programming (ECOOP), vol. 4609,
pp. 176–200. Springer (2007). https://doi.org/10.1007/978-3-540-73589-2_9

[141] Lee, E., Seo, Y., Oh, S., Kim, Y.: A Survey on Standards for Interoperability
and Security in the Internet of Things 23(2), 1020–1047 (2021) https://doi.or
g/10.1109/COMST.2021.3067354

[142] Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in internet of things:
Taxonomies and open challenges 24(3), 796–809 (2019) https://doi.org/10.100
7/S11036-018-1089-9

[143] Martino, B.D., Rak, M., Ficco, M., Esposito, A., Maisto, S.A., Nacchia, S.:
Internet of things reference architectures, security and interoperability: A survey.
Internet Things 1-2, 99–112 (2018) https://doi.org/10.1016/J.IOT.2018.08.008

[144] Gyrard, A., Datta, S.K., Bonnet, C.: A Survey and Analysis of Ontology-Based
Software Tools for Semantic Interoperability in IoT and WoT Landscapes. In:
Proc. World Forum on Internet of Things (WF-IoT), pp. 86–91. IEEE (2018).
https://doi.org/10.1109/WF-IOT.2018.8355091

49

https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1007/978-3-319-14130-5_2
https://doi.org/10.1007/978-3-319-14130-5_2
https://doi.org/10.1016/J.JSS.2016.07.039
https://doi.org/10.1016/J.JSS.2020.110748
https://doi.org/10.1145/3422392.3422399
https://doi.org/10.1145/3422392.3422399
https://doi.org/10.1007/978-3-540-73589-2_9
https://doi.org/10.1109/COMST.2021.3067354
https://doi.org/10.1109/COMST.2021.3067354
https://doi.org/10.1007/S11036-018-1089-9
https://doi.org/10.1007/S11036-018-1089-9
https://doi.org/10.1016/J.IOT.2018.08.008
https://doi.org/10.1109/WF-IOT.2018.8355091

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[145] Burzlaff, F., Wilken, N., Bartelt, C., Stuckenschmidt, H.: Semantic Inter-
operability Methods for Smart Service Systems: A Survey. IEEE Trans. on
Engineering Management 69(6), 4052–4066 (2022) https://doi.org/10.1109/TE
M.2019.2922103

[146] Kambourakis, G., Kolias, C., Geneiatakis, D., Karopoulos, G., Makrakis, G.M.,
Kounelis, I.: A State-of-the-Art Review on the Security of Mainstream IoT Wire-
less PAN Protocol Stacks. Symmetry 12(4), 579 (2020) https://doi.org/10.339
0/SYM12040579

[147] Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Seman-
tic interoperability in the Internet of Things: An overview from the INTER-IoT
perspective. Journal of Network and Computer Applications 81, 111–124 (2017)
https://doi.org/10.1016/J.JNCA.2016.08.007

[148] Nabu Casa: About Us. Nabu Casa. https://www.nabucasa.com/about/
Accessed 2025-07-17

[149] Sørensen, J.: HACS 2.0 - The Best Way to Share Community-Made Projects
Just Got Better. Home Assistant. https://www.home-assistant.io/blog/202
4/08/21/hacs-the-best-way-to-share-community-made-projects/ Accessed
2025-07-17

[150] Home Assistant Community Store (HACS). https://hacs.xyz/ Accessed 2025-
07-17

[151] marshalleq: Thinking of Dropping Home Assistant Due to Poor Integration Con-
nectivity and Consistency. Home Assistant Community. https://community.ho
me-assistant.io/t/thinking-of-dropping-home-assistant-due-to-poor-integrati
on-connectivity-and-consistency/779978 Accessed 2025-07-17

[152] Python Package Index (PyPI). https://pypi.org/ Accessed 2025-07-18

[153] About the Python Software Foundation. Python.org. https://www.python.org
/psf/about/ Accessed 2025-07-18

[154] PEP 13 – Python Language Governance. Python Enhancement Proposals
(PEPs). https://peps.python.org/pep-0013/ Accessed 2025-07-18

[155] Micropython/Micropython. MicroPython. https://github.com/micropython/m
icropython Accessed 2025-07-18

[156] RustPython/RustPython. RustPython. https://github.com/RustPython/Rust
Python Accessed 2025-07-18

[157] MicroPython Differences from CPython. MicroPython Documentation. https:
//docs.micropython.org/en/latest/genrst/index.html Accessed 2025-07-18

50

https://doi.org/10.1109/TEM.2019.2922103
https://doi.org/10.1109/TEM.2019.2922103
https://doi.org/10.3390/SYM12040579
https://doi.org/10.3390/SYM12040579
https://doi.org/10.1016/J.JNCA.2016.08.007
https://www.nabucasa.com/about/
https://www.home-assistant.io/blog/2024/08/21/hacs-the-best-way-to-share-community-made-projects/
https://www.home-assistant.io/blog/2024/08/21/hacs-the-best-way-to-share-community-made-projects/
https://hacs.xyz/
https://community.home-assistant.io/t/thinking-of-dropping-home-assistant-due-to-poor-integration-connectivity-and-consistency/779978
https://community.home-assistant.io/t/thinking-of-dropping-home-assistant-due-to-poor-integration-connectivity-and-consistency/779978
https://community.home-assistant.io/t/thinking-of-dropping-home-assistant-due-to-poor-integration-connectivity-and-consistency/779978
https://pypi.org/
https://www.python.org/psf/about/
https://www.python.org/psf/about/
https://peps.python.org/pep-0013/
https://github.com/micropython/micropython
https://github.com/micropython/micropython
https://github.com/RustPython/RustPython
https://github.com/RustPython/RustPython
https://docs.micropython.org/en/latest/genrst/index.html
https://docs.micropython.org/en/latest/genrst/index.html

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[158] Bech32 Adoption. Bitcoin Wiki. https://en.bitcoin.it/wiki/Bech32_adoption

[159] Lopp, J.: Bitcoin Technical Resources. https://www.lopp.net/bitcoin-informati
on/technical-resources.html

[160] Chan, W.K., Chin, J., Goh, V.T.: Evolution of bitcoin addresses from security
perspectives. In: Proc. Int’l Conf. on Internet Technologies and Secured Trans-
actions (ICITST), pp. 1–6. IEEE (2020). https://doi.org/10.23919/ICITST510
30.2020.9351346

[161] Bertrand, J.: The Hidden World of Bitcoin Invalid Blocks: Insights And Impli-
cations. D-Central. https://d-central.tech/the-hidden-world-of-bitcoin-invalid
-blocks-insights-and-implications Accessed 2025-01-16

[162] Bier, J.: The Blocksize War: The Battle over Who Controls Bitcoin’s Protocol
Rules. Independently published (2021)

[163] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report (1990).
https://doi.org/10.21236/ADA235785

[164] Benavides, D., Sundermann, C., Feichtinger, K., Galindo, J.A., Rabiser, R.,
Thüm, T.: UVL: Feature modelling with the Universal Variability Language. J.
Systems and Software (JSS) 225, 112326 (2025) https://doi.org/10.1016/J.JS
S.2024.112326

[165] Seidl, C., Schaefer, I., Aßmann, U.: Capturing Variability in Space and Time
with Hyper Feature Models. In: Proc. Int’l Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS), pp. 6–168. ACM (2014). https://doi.or
g/10.1145/2556624.2556625

[166] Santos, I.S., Rocha, L.S., A. Santos Neto, P., Andrade, R.M.C.: Model Verifi-
cation of Dynamic Software Product Lines. In: Proc. Brazilian Symposium on
Software Engineering (SBES), pp. 113–122. ACM (2016). https://doi.org/10.1
145/2973839.2973852

[167] Pnueli, A.: The Temporal Logic of Programs. In: Proc. Symposium on Founda-
tions of Computer Science (SFCS), pp. 46–57. IEEE (1977). https://doi.org/10
.1109/SFCS.1977.32

[168] Thüm, T., Batory, D.S., Kästner, C.: Reasoning About Edits to Feature Models.
In: Proc. Int’l Conf. on Software Engineering (ICSE), pp. 254–264. IEEE (2009).
https://doi.org/10.1109/ICSE.2009.5070526

[169] Dashjr, L.: BIP20: URI Scheme. https://bips.dev/20/

51

https://en.bitcoin.it/wiki/Bech32_adoption
https://www.lopp.net/bitcoin-information/technical-resources.html
https://www.lopp.net/bitcoin-information/technical-resources.html
https://doi.org/10.23919/ICITST51030.2020.9351346
https://doi.org/10.23919/ICITST51030.2020.9351346
https://d-central.tech/the-hidden-world-of-bitcoin-invalid-blocks-insights-and-implications
https://d-central.tech/the-hidden-world-of-bitcoin-invalid-blocks-insights-and-implications
https://doi.org/10.21236/ADA235785
https://doi.org/10.1016/J.JSS.2024.112326
https://doi.org/10.1016/J.JSS.2024.112326
https://doi.org/10.1145/2556624.2556625
https://doi.org/10.1145/2556624.2556625
https://doi.org/10.1145/2973839.2973852
https://doi.org/10.1145/2973839.2973852
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/ICSE.2009.5070526
https://bips.dev/20/

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[170] Amick, S.: Understanding Taproot In A Simple Way. https://bitcoinmagazine.
com/technical/understanding-taproot-in-a-simple-way Accessed 2025-07-18

[171] Chow, A.: BIP373: MuSig2 PSBT Fields. https://bips.dev/373/

[172] Greiner, S., Schultheiß, A., Bittner, P.M., Thüm, T., Kehrer, T.: Give an Inch
and Take a Mile? Effects of Adding Reliable Knowledge to Heuristic Feature
Tracing. In: Proc. Int’l Systems and Software Product Line Conf. (SPLC), pp.
84–95. ACM (2024). https://doi.org/10.1145/3646548.3672593

[173] Linsbauer, L., Schwägerl, F., Berger, T., Grünbacher, P.: Concepts of variation
control systems. J. Systems and Software (JSS) 171, 110796 (2021) https://do
i.org/10.1016/J.JSS.2020.110796

[174] Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source
code: a taxonomy and survey. J. Software: Evolution and Process 25(1), 53–95
(2013) https://doi.org/10.1002/SMR.567

[175] Xia, B., Bi, T., Xing, Z., Lu, Q., Zhu, L.: An Empirical Study on Software Bill
of Materials: Where We Stand and the Road Ahead. In: Proc. Int’l Conf. on
Software Engineering (ICSE), pp. 2630–2642. IEEE (2023). https://doi.org/10
.1109/ICSE48619.2023.00219

[176] Agh, H., Azamnouri, A., Wagner, S.: Software product line testing: a systematic
literature review. Empirical Software Engineering (EMSE) 29(6), 146 (2024)
https://doi.org/10.1007/S10664-024-10516-X

[177] Varshosaz, M., Al-Hajjaji, M., Thüm, T., Runge, T., Mousavi, M.R., Schaefer,
I.: A Classification of Product Sampling for Software Product Lines. In: Proc.
Int’l Systems and Software Product Line Conf. (SPLC), pp. 1–13. ACM (2018).
https://doi.org/10.1145/3233027.3233035

[178] Noran, O.: Achieving a sustainable interoperability of standards. Annual
Reviews Control 36(2), 327–337 (2012) https://doi.org/10.1016/J.ARCONT
ROL.2012.09.014

[179] Ray, S.R., Jones, A.T.: Manufacturing interoperability. J. Intelligent Manu-
facturing 17(6), 681–688 (2006) https://doi.org/10.1007/S10845-006-003
7-X

[180] Sartipi, K., Yarmand, M.H.: Standard-based Data and Service Interoperability
in eHealth Systems. In: Proc. Int’l Conf. on Software Maintenance (ICSM), pp.
187–196. IEEE (2008). https://doi.org/10.1109/ICSM.2008.4658067

52

https://bitcoinmagazine.com/technical/understanding-taproot-in-a-simple-way
https://bitcoinmagazine.com/technical/understanding-taproot-in-a-simple-way
https://bips.dev/373/
https://doi.org/10.1145/3646548.3672593
https://doi.org/10.1016/J.JSS.2020.110796
https://doi.org/10.1016/J.JSS.2020.110796
https://doi.org/10.1002/SMR.567
https://doi.org/10.1109/ICSE48619.2023.00219
https://doi.org/10.1109/ICSE48619.2023.00219
https://doi.org/10.1007/S10664-024-10516-X
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1016/J.ARCONTROL.2012.09.014
https://doi.org/10.1016/J.ARCONTROL.2012.09.014
https://doi.org/10.1007/S10845-006-0037-X
https://doi.org/10.1007/S10845-006-0037-X
https://doi.org/10.1109/ICSM.2008.4658067

⊛ Preprint – Accepted for publication in Automated Software Engineering 2026 ⊛

[181] Butler, S., Gamalielsson, J., Lundell, B., Brax, C., Mattsson, A., Gustavsson,
T., Feist, J., Lönroth, E.: Maintaining interoperability in open source software:
A case study of the Apache PDFBox project. J. Systems and Software (JSS)
159 (2020) https://doi.org/10.1016/J.JSS.2019.110452

[182] Lewis, G.A.: Role of Standards in Cloud-Computing Interoperability. In: HICSS,
pp. 1652–1661. IEEE (2013). https://doi.org/10.1109/HICSS.2013.470

[183] Laar, P., Hendriks, T.: A retrospective analysis of teletext: An interoperabil-
ity standard evolving already over 30 years. Advanced Engineering Informatics
26(3), 516–528 (2012) https://doi.org/10.1016/J.AEI.2012.04.007

[184] Siegmund, J., Siegmund, N., Apel, S.: Views on Internal and External Validity
in Empirical Software Engineering. In: Proc. Int’l Conf. on Software Engineering
(ICSE), pp. 9–19. IEEE (2015). https://doi.org/10.1109/ICSE.2015.24

53

https://doi.org/10.1016/J.JSS.2019.110452
https://doi.org/10.1109/HICSS.2013.470
https://doi.org/10.1016/J.AEI.2012.04.007
https://doi.org/10.1109/ICSE.2015.24

	1 Introduction
	2 Background, Motivation and Scope
	2.1 Software Variability as a Natural Phenomenon
	2.2 Software Variability as a Capability
	2.3 Research Motivation and Scope

	3 Showcasing CDV Characteristics in Bitcoin
	4 Constituting Characterization of a Novel Paradigm
	C1 - Improvement Proposals
	C2 - Crowdsourcing
	C3 - Independent Derivatives
	C4 - Interoperability
	C5 - Decoupled Evolution

	5 Fulfillment of CDV Characteristics in Various Variability Paradigms
	5.1 Taxonomy-Based Classification Process
	5.2 CDV Ecosystems
	5.2.1 Bitcoin and Lightning
	5.2.2 Ethereum
	5.2.3 Nostr
	5.2.4 Tor Protocol
	5.2.5 IPFS

	5.3 Software Product Lines
	5.3.1 Linux Kernel
	5.3.2 Eclipse
	5.3.3 BusyBox

	5.4 Clone-and-Own Projects
	5.4.1 Apo-Games
	5.4.2 Marlin Forks
	5.4.3 Health Watcher

	5.5 Other
	5.5.1 Home Assistant
	5.5.2 Python

	5.6 Summary

	6 Emerging Problems
	7 Research Vision
	7.1 Research Goals
	7.2 Starting Points for Technical Solutions
	7.2.1 Starting Points for RG1
	7.2.2 Starting Points for RG2 and RG3
	7.2.3 Research Methods and Study Subjects

	8 Conclusion
	Acknowledgements

