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Abstract
Both software engineering researchers and practitioners have in-
creasingly shifted their focus from single software systems to soft-
ware families, reflecting the need for software industrialization
through systematic reuse of implementation artifacts. Interestingly,
several vibrant ecosystems produce software families in a radi-
cally different way than classical variability-intensive systems, no-
tably software product lines. The Bitcoin community, for instance,
evolves its ecosystem through openly shared improvement pro-
posals being continuously shaped and autonomously implemented
by independent actors. While this novel paradigm of community-
driven variability (CDV) has proven effective for driving flourishing
technologies like Bitcoin and others, it also comes with unique chal-
lenges calling for novel solutions. In this paper, we define the key
characteristics of ecosystems exposing CDV, highlight the novel
problems they face, and outline our research vision that tackles the
emerging challenges.
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1 Introduction
Since Parnas’ seminal work on program families in the 1970s [44],
both software engineering researchers and practitioners have in-
creasingly shifted their focus from developing single software sys-
tems to managing families of software variants sharing common
functionality [46]. The most systematic class of approaches for de-
veloping such variability-intensive systems is summarized under
the umbrella term of software product-line engineering [19, 46],
which relies on an explicit model of variability in terms of features
realized based on an integrated software platform [20, 28]. Recent
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literature also discusses more liberal approaches to managing soft-
ware families, spanning a continuum that ranges from managing
ad-hoc clone-and-own [35, 48, 51] to rigorous product-line engi-
neering [18, 50, 52].

Interestingly, several vibrant ecosystems produce software fami-
lies in a radically different way than classical variability-intensive
systems. They are driven by factors other than software industrial-
ization and mass customization, and exhibit variability that is not
focused on reusing implementation artifacts. Instead, they focus
on achieving interoperability within the software family through
the ecosystem community’s continuous effort to shape an open
set of specification documents, referred to as improvement pro-
posals (IPs). Based on this set of IPs, developer groups within the
community independently derive their own variants by selecting
and implementing a desired subset of the specifications. This in-
dependent derivation fosters a broad range of software variability
across multiple dimensions.

As an example for such an ecosystem, consider Bitcoin [42]
with its various application types (e.g., core protocol, nodes, wallet
applications, block explorers, side-chains) and actors (e.g., develop-
ers, users, analysts). The concepts that define Bitcoin, along with
any potential features introduced to the ecosystem, are shaped by
Bitcoin Improvement Proposals (BIPs), a decentralized collection of
open-source specification documents written by independent actors
sharing mutual interests [2]. The BIP process itself is also defined
in this manner, namely within BIP2 [29], an excerpt of which is
shown in Fig. 1. Developers independently choose and implement
subsets of BIPs in their applications, yielding a constantly grow-
ing set of software variants to which we refer as implementation
derivatives. Conceptually, the commonalities and differences among
these derivatives can be partially described in terms of BIPs, but
there is typically no reuse of development artifacts at the implemen-
tation level. Nevertheless, we see the ecosystem evolving with in-
credible dynamism, exposing multidimensional variability to which
we refer as community-driven variability (CDV).

However, Bitcoin is not the only example. Next to Bitcoin, this
novel form of CDV is also observed in other ecosystems, each us-
ing a slightly different interpretation of improvement proposals
(e.g., Ethereum Improvement Proposals (EIPs) [8], Bitcoin Light-
ning Improvement Proposals (bLIPs) [3], InterPlanetary Improve-
ment Proposals (IPIPs) [9], The Onion Router Design Proposals
(TORDPs) [13], or Nostr Implementation Possibilities (NIPs) [12]).
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BIP: <BIP number, or "?" before being assigned>

* Layer: <Consensus | Peer Services | Applications | ...>

Title: <BIP title; maximum 44 characters>

Author: <list of authors' real names and email addrs>

* Discussions-To: <email address>

Status: <Draft | Active | Proposed | Deferred | Rejected |

Withdrawn | Final | Replaced | Obsolete>

Type: <Standards Track | Informational | Process>

* Requires: <BIP number(s)>

* Replaces: <BIP number>

* Superseded-By: <BIP number>

Figure 1: Excerpt of BIP preamble structure from BIP2 [29].

The paradigm of continuously shaping a de-facto standard and its
implementation derivatives has proven to be an effective method for
evolving open-source technologies with significant dynamism and
traction. However, these ecosystems not only encounter challenges
similar to those of classical variability-intensive systems, but also
entirely new ones. Without an explicit variability model, managing
the consistent evolution of improvement proposals becomes increas-
ingly challenging and error-prone. Bitcoin’s BIP2, for example, has
recently (Sep. 18, 2024) received a revision request [32] motivated
by several “pain points”. This indicates the need to improve the
governance and management of the decentralized proposal process,
addressing growing challenges wrt. maintaining overview, trans-
parency, and consensus within the current proposal framework.
Furthermore, derivatives may expose impaired derivative interoper-
ability, which is usually not the case for classical software families
where variants are meant to be standalone software products. For
example, a Reddit post [17] raises awareness for incompatibility
issues induced by BIP32 HD Wallets following different derivation
paths. Follow-up discussions on Bitcoin Stack Exchange [11] and a
dedicated website on wallet recovery [14] underpin the severity of
the problem.

While classical domains reporting successful SPL adoption and
emerging technologies following the paradigm of CDV appearmiles
apart, we recognize the value in exploring this novel paradigm and
the possibility of adapting concepts from one paradigm to the other.
Since the use of features as a central domain abstraction in SPLs
aligns well with IPs in CDV, adapting the idea of feature-oriented
modeling and analysis seems promising for tackling CDV-induced
problems, without necessitating the adoption of product-line de-
velopment processes. Conversely, research on classical variability-
intensive systems will gain new momentum through the unique
problems posed by CDV, leading to advancements that will push
the state-of-the-art and generate new insights that may ultimately
influence other domains.

In this paper, we outline our research vision on entering the
novel field of CDV, summarizing our contributions as follows:

• We introduce the concept of CDV and conduct an analy-
sis of this emerging paradigm, presenting a set of defining
characteristics (Sect. 2).

• Using this analysis, we examine key problems faced in ecosys-
tems that exhibit CDV (Sect. 3).

• We derive concrete research goals aimed at addressing the
identified problems and outline the next steps towards achiev-
ing these goals (Sect. 4).

IP

IP
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IP IP

IPIP

IP
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Figure 2: A schematic overview of the CDV landscape.

2 Characterization of a Novel Paradigm
To better understand the dynamics of CDV ecosystems, we thor-
oughly analyzed the Bitcoin ecosystem as a prominent representa-
tive. Our analysis is based on online resources, supplemented by
interviews with a Bitcoin derivative developer and an advanced end
user. We illustrate a summary of our results in Fig. 2. The proposal
spectrum comprising the ecosystem’s improvement proposals (IPs)
is illustrated on top. The lower part illustrates the derivative spec-
trum comprising the ecosystem’s applications, indicated as imple-
mentation derivatives 𝑑1 − 𝑑6 implementing varying sets of IPs.
Both the proposal spectrum and the derivative spectrum evolve
continuously, indicated by time progressing from left to right.

IPs are open-source specification documents written by inde-
pendent actors sharing mutual interests. A substantial amount of
IPs is closely related to the traditional notion of a feature, some
IPs even become synonymous with feature names. For instance,
the Bitcoin community speaks of BIP32 HD Wallets [61] or BIP39
Mnemonic Seeds [43], reflected in the user-interface terminology of
wallet applications such as Sparrow [27].

Moreover, IPs have a dedicated status and may expose various
kinds of interrelations (connection lines between IPs in Fig. 2). BIP2
(cf. Fig. 1), for instance, mentions status labels ranging from draft
over final up to replaced or obsolete, and IP interrelations such as
requires, replaces, or superseded-by. This indicates that IP statuses
and interrelations are continuously reshaped, extended, overruled,
or rejected. For example, BIP84 requires BIP173, while BIP173 has
replaced BIP142 and itself is superseded by BIP350.

Applications constituting the derivative spectrum may be cre-
ated at different points in time, each of them implementing an
autonomously selected set of IPs (dashed arrows from 𝑑𝑛 to IPs).
While exposing variability in terms of conceptual features shaped
by IPs, implementation derivatives can be built on various technol-
ogy stacks and serve distinct or overlapping purposes. Fig. 2 illus-
trates this range of technology and purpose using different shapes
and gradient-colored backgrounds, respectively. Some derivatives
remain stable over time (𝑑1, 𝑑6), while others may evolve.

From an organizational point of view, derivatives have full auton-
omy when composing their IP set. However, following the common
goal of interoperability among derivatives, an ecosystem’s commu-
nity typically has a shared understanding of what is considered
the de-facto standard at a specific point in time. We illustrate this
evolving de-facto standard through a forward-moving IP cloud that
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Characteristics Encouraging CDV

C1 – Openness: There exists an open de-facto standard in the ecosystem that
is continuously shaped by independent actors with distributed authority.

C2 – Improvement Proposals: This de-facto standard defines how the
system shall operate using a set of improvement proposals (IPs) that can
have dependencies, varying levels of importance, and undergo different states.

C3 – Independent Derivatives: Developers choose a set of IPs from which
they implement independent derivatives using different technology stacks
and targeting different use-cases.

C4 – Interoperability: The ecosystem’s value and flourishing substantially
depends on and encourages direct or indirect derivative interaction.

C5 – Decoupled Evolution: The de-facto standard, its feature specification,
and the derivatives evolve autonomously and detached from each other while
following their own life cycles.

Figure 3: Characteristics Encouraging CDV.

may morph into different shapes and sizes over time. Core IPs serv-
ing as active building blocks for other dependent IPs are likely to
be implemented more frequently by derivatives than others, and
thus contribute to the perception of a de-facto standard (central
part of an IP cloud in Fig. 2). Outside this de-facto standard, there
may be other IPs or informal proposals which are not (yet) officially
approved but generally accepted by the community (outer part of
an IP cloud). For example, other renowned sources augment the
primary catalog of BIPs [2] such as, e.g., the SatoshiLabs Improve-
ment Proposals (SLIPs) [49]. Likewise, IPs that are not yet finalized
can still become de-facto standards if widely adopted. For example,
BIP39, though officially holding “proposed” status until the end
of 2024, has long been a standard feature among derivatives. Con-
versely, derivatives may counter established IPs using their own
alternatives motivated by their own beliefs or technological goals.
The derivative Electrum [6], for example, argues shortcomings in
BIP39 and thus advocates its own alternative [7].

Based on our analysis, we define the constituting characteristics
of ecosystems exhibiting CDV and present them in Fig. 3. To give an
understanding on how these characteristics are present in different
variability paradigms, we characterize a representative sample of
such software ecosystems in Table 1. These include prominent CDV
ecosystems and traditional variability-intensive systems, i.e., SPLs
and Clone-and-Own systems frequently used as study subjects in
prominent scientific publication outlet. CDV ecosystems fulfill  
most or all of the listed characteristics, though they may differ in
details such as defining different sets of IP statuses, other kinds of
IP interrelations, etc. In contrast, the remaining ecosystems fulfill
the CDV characteristics only partially G# or not at all #.

3 Emerging Problems
We identified several generalizable challenges faced by key actors
in community-driven variability (CDV), including IP maintainers,
derivative developers, and end users. We focus on those that tran-
scendent classical variability-intensive systems and were confirmed
in our interviews with Bitcoin experts. Note that the listed problems
are not confined to Bitcoin but also inherent to other ecosystems
due to the fundamental characteristics of CDV.

P1 & P2 – Missing overview of proposal and derivative
spectrum: Due to the dynamics imposed by characteristics C1-C5,
communities typically lack an overview of the entire ecosystem
and its evolution. Consequently, involved actors lack orientation

for guiding their decisions within the ecosystem. This missing
overview is felt on both levels: the proposal spectrum (P1), and the
derivative spectrum (P2). Realizing the need for an overview, the
Bitcoin community already created a number of websites that mon-
itor [10], compare [1, 24], or suggest [5] derivatives. We find these
handcrafted ad-hoc monitoring efforts insufficient, but they under-
score the richness of existing variability and, more importantly, the
need to manage it effectively.

P3 – IP change impact assessment: The actors (C1) in the
ecosystem face challenges during suggesting and updating IPs (C2),
such as avoiding unforeseen side effects and change impact assess-
ment (C4). For example, although on-boarding developer guidelines
exist in Bitcoin [40], resources that document the interrelations
between BIPs or their perceived feature impacts are missing.

P4 – Misalignment of proposal and derivative spectrum:
There is a common interest to avoid a misalignment (C5) of deriva-
tives and the proposal spectrum. However, developers (C3) lack the
necessary guidance for alignment, while end users are unable to ver-
ify it, undermining trust in derivatives (C4) and into the ecosystem.
This lack of guidance is exemplified in Electrum avoiding BIP39 [7],
whereas Sparrow “tries wherever possible to adhere to commonly
accepted standards in order to have as wide an interoperability as
possible.” [27]

P5 –Determining interoperability of derivatives:The shared
interest in interoperability (C4) forces developers and end users to
be aware of potential restrictions of derivative interactions. A lack
of interoperability can lead to immense damage, such as permanent
financial losses due to wallet recovery issues [14, 26] or incorrectly
mined blocks [22]. Some communities already introduced partial
solutions for this problem, e.g., feature vectors [4], a handshake, that
tests what features the other derivative implements prior to actual
interaction. However, users could place more trust into a more
rigorous procedure, that is formally derived from and enforced
through an ecosystem’s variability model.

P6 – Ecosystem fork: The independent evolution of proposals
and derivatives (C5) can lead to complex phenomena: As some IPs
are embraced by the whole community, others may be rejected by
a tight-knit part of the community (C3). This can lead to a split
within the ecosystem into fractions or a complete detachment, as
sub-communities drift further and further apart. Ultimately, such
detachments provoke yet another variability source for both IPs (C2)
and derivatives (C3), catalyzing the severity of P1-P5. In Bitcoin
and related domains, for instance, this phenomenon is referred to
as fork and has had occurred several times in the past (e.g., Bitcoin
Cash, Gold, SV) [23].

4 Research Vision
Our research vision is to develop foundations for methods support-
ing the continuous evolution of ecosystems exposing CDV, tackling
the problems identified in Sect. 3. We focus on understanding and
auditing its multidimensional dynamics, and on providing means
for constructive, organizational and analytic quality assurance. We
present our research goals, promising starting points for technical
solutions, and envisioned research methods and study subjects.
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Table 1: CDV characteristics of selected ecosystems/projects.

Paradigm Ecosystem/Project C1 C2 C3 C4 C5

CDV

Bitcoin [2, 42]; Lightning [3, 47]      
Nostr [12]      

Ethereum [8] G#

    
Tor Protocol [13, 30] ; IPFS [9, 21] G#

    

SPL
Linux Kernel [15, 33] G# G# G#

# #
Eclipse [25, 58] G# G# G# G#

#
BusyBox [45, 60] G# G# G#

# #
Clone
&

Own

ApoGames [36, 41] # #

G#

#

G#

Marlin Forks [37, 38] # #

G#

#

G#

Health Watcher [54, 55] # #

G#

# #

4.1 Research Goals
RG1 – Systematic treatment of CDV in proposal spectrum:
Our first research goal is threefold. First, we aim to develop a vari-
ability modeling formalism and notation that can adequately cap-
ture CDV ecosystems and their evolution, providing a structured,
explorable representation of the proposal spectrum amenable to
analysis (P1). Second, we want to support the automated extraction
of CDV models from various resources, with a focus on deriving
variability models directly from IP collections. Third, analysis tech-
niques shall be developed to reason about the structure and con-
straints of CDV models, spotting anomalous IPs and interrelations.
This includes methods for differential analysis of CDV models rep-
resenting different proposal spectrum snapshots, facilitating change
impact analyses in the proposal spectrum (P3, P6).

Impact: Holistic modeling of a CDV ecosystem’s topology fos-
tering comprehensibility and auditability.

RG2 – Supporting cohesive evolution of proposal and de-
rivative spectrum: Given the autonomous evolution of these two
spectra, our goal is to better understand and measure their cohe-
sion (P4). This includes providing configuration support through
CDV model-guided IP selection and first cohesion assessments by,
e.g., checking a given set of IPs against a CDV model. However, the
major endeavor pursued with this research goal is to support trac-
ing of IPs from the proposal to the derivative spectrum, providing
a better understanding of the derivative spectrum (P2) and facil-
itate further change impact analyses (P3). Besides IP traceability,
we aim at mining CDV models from existing derivatives, enabling
comparisons with those extracted from the IP spectrum (P4) and
analyzing potential drift between community forks (P6).

Impact: Streamline the evolution of ecosystems by increasing
the efficiency and effectiveness of future development endeavors.

RG3 – Methodical handling of derivative interoperability
impairment: We dedicate our final research goal to address the
challenges related to impaired interoperability within the derivative
spectrum (P5), which boils down to handling and detecting unde-
sired inter-derivative IP interactions. Anticipated interactions shall
be documented and articulated through the CDV model, amenable
to automatically validating derivativeswrt. proposal spectrum align-
ment (P4). Unanticipated interactions impairing interoperability
shall be detected through systematic IP interaction testing, which
must be both effective and efficient to be accepted in practice.

Impact: Reduce the effort and complexity of proper inter-
derivative feature testing, further maximizing interoperability
and positive user experience.

4.2 Starting Points for Technical Solutions
In general, our technical solutions for achieving our research goals
RG1-RG3 shall adopt existing variability mechanisms as far as possi-
ble, yet with radically different goals and assumptions, and without
the need to adopt product-line development processes which hardly
apply to the dynamics of community-driven ecosystems.

Inspired by classical approaches to variability modeling and prob-
lem space analysis [19], the first essential step towards RG1 is to
develop a variability modeling formalism and notation that ade-
quately captures CDV. We foresee a basic set of required concepts
provided by the Universal Variability Language (UVL) and Hyper
Feature Models (HFMs) [53]. The UVL already unifies the many
existing variability modeling approaches used across various do-
mains, and it may be extended by the means for describing the life
cycle of IPs and their specific kinds of interrelations. HFMs extend
traditional feature models in both space and time, a promising idea
which may be adapted to reflect the multidimensional nature of
CDV. As for advanced analyses of the proposal spectrum evolution,
the idea of semantic feature model differencing [57] may be adapted
to the differential analysis of CDV model snapshots.

The major task for realizing RG2 revolves around supporting
IP traceability from the proposal to the derivative spectrum. We
envision retroactive IP location techniques [34], as the dynamic
nature of these ecosystems often hinders proactive IP tracing. Since
we cannot assume the derivatives being created through traditional
clone-and-own [35, 48], we may hardly adopt set-based techniques
such as Ecco [39] for this task. However, it might be promising
to evaluate the performance of feature location techniques being
capable of working with single variants only [31]. Moreover, since
derivatives may integrate reference libraries such as cryptographic
primitives, extracting Software Bills of Materials (SBOMs) [62] for
derivatives may inform the identification of their implemented IPs.

The most challenging part of RG3 is to support the detection
of unanticipated IP interactions impairing interoperability. While
pushing the boundaries from intra-derivative to inter-derivative
interaction testing goes beyond software quality issues addressed by
software product-line testing [16], it exposes similar challenges. As
testing all the mutual IP interactions of implementation derivatives
is infeasible, we strive for novel sampling methods that enable
spotting the most harmful interactions effectively. To that end, we
aim to lift existing combinatorial interaction testing strategies [59]
to CDV models. This allows us to explore the sample space induced
by different strategies and eventually making informed decisions
in balancing efficiency and effectiveness.

4.3 Research Methods and Study Subjects
Given our technically focused research goals, we adopt a design
science approach, implementing conceptual solutions as research
prototypes for evaluation. We primarily strive for an evaluation
strategy that favors maximizing internal validity over external va-
lidity [56]. We will first focus on the Bitcoin ecosystem for three
reasons: (1) its large community and high degree of CDV, (2) the
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abundance of high-quality, openly available data, and (3) its long
history, allowing for retrospective study and simulation of its evo-
lutionary dynamics. Then, we increase the external validity of our
results by studying other ecosystems sharing similar characteristics.
In parallel, we will conduct qualitative research through surveys
and interviews with actors of representative ecosystems, for fur-
ther validation and potential refinement of our problem analysis.
Furthermore, we will explore potential impacts of our research on
ecosystems that are closely related to CDV.

5 Conclusion
Community-driven variability (CDV) represents an emerging form
of distributed software variability that transcends traditional cen-
tralized variability-intensive systems and is unexplored in current
literature. This vibrant field offers a number of relevant challenges,
which become more demanding as the communities grow and the
ecosystems evolve. In our research vision presented in this paper,
we outline how leveraging feature-oriented modeling and analysis
concepts may be a promising starting point for effectively address-
ing CDV challenges without introducing product-line processes,
fostering synergies and mutual impact.
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