
Beyond Code: Is There a Difference Between Comments
in Visual and Textual Languages?

Alexander Boll ∗, Pooja Rani , Alexander Schultheiß , Timo Kehrer

Abstract

Code comments are crucial for program comprehension and maintenance. To better understand the nature and content
of comments, previous work proposed taxonomies of comment information for textual languages, notably classical pro-
gramming languages. However, paradigms such as model-driven or model-based engineering often promote the use of
visual languages, to which existing taxonomies are not directly applicable. Taking MATLAB/Simulink as a represen-
tative of a sophisticated and widely used modeling environment, we extend a multi-language comment taxonomy onto
new (visual) comment types and two new languages: Simulink and MATLAB. Furthermore, we outline Simulink com-
menting practices and compare them to textual languages. We analyze 259,267 comments from 9,095 Simulink models
and 17,792 MATLAB scripts. We identify the comment types, their usage frequency, classify comment information, and
analyze their correlations with model metrics. We manually analyze 757 comments to extend the taxonomy. We also
analyze commenting guidelines and developer adherence to them. Our extended taxonomy, SCoT (Simulink Comment
Taxonomy), contains 25 categories. We find that Simulink comments, although often duplicated, are used at all model
hierarchy levels. Of all comment types, Annotations are used most often; Notes scarcely. Our results indicate that
Simulink developers, instead of extending comments, add new ones, and rarely follow commenting guidelines. Overall,
we find Simulink comment information comparable to textual languages, which highlights commenting practice similarity
across languages.

Keywords: documentation, graphical, diagram, knowledge-transfer, Simulink, model-driven engineering, comment
clones, taxonomy

1. Introduction

Code comments (hereinafter comments) are crucial in
helping developers understand, maintain, extend source
code [12, 56, 57], and find locations of interest in the source
code [50]. High-quality comments, therefore, have a high
impact on lowering the development cost and improving
the quality of software [41]. Given the importance of com-
ments, researchers focused on many aspects of them, e.g.,
automatically assessing comment quality [38], comment
completion [59], comment generation [16, 19], to name
only a few. Recently, researchers explored the contents
of class comments and categorized the various information
in them [34, 40, 58]. Building on this, Rani et al . [39]
formulated a taxonomy of comment information, called
Class Comment Type Model (CCTM), containing types
such as summaries, warnings, recommendations, licensing
information, etc. A complete taxonomy of comment types
is needed for further automation of tools handling com-
ments.

∗Corresponding author
Email addresses: alexander.boll@inf.unibe.ch (Alexander

Boll), rani@ifi.uzh.ch (Pooja Rani),
AlexanderSchultheiss@pm.me (Alexander Schultheiß),
timo.kehrer@unibe.ch (Timo Kehrer)

Prior categorization efforts, however, were done on tex-
tual class comments of object-oriented general-purpose
languages (i.e., Python, Java, and Smalltalk) only. On
the contrary, little is known about commenting practices
in language environments using visual paradigms, such as
Simulink [20, 33]. In particular, the classification taxon-
omy from textual languages cannot be directly transferred.
Apart from the different paradigms, Simulink has several
ways to comment models, and the possibilities are more
diverse than purely textual comments (see Section 2.2).
Furthermore, Simulink models are often designed by non-
software engineers [1]. Such domain experts may employ
a unique commenting culture when compared with more
“classical” software engineers.

Choosing Simulink as one representative of visual lan-
guages – Simulink is a mature software which is widely
studied and employed in several key industries [11, 14, 26,
53] – our overall goal is twofold. We first aim at getting a
better understanding of commenting practice in Simulink,
before a comparison to textual languages shall help us to
build a bridge for transferring existing knowledge from
textual to visual programming languages. To that end,
we study Simulink comments and develop a classification
taxonomy for them, generalizing prior work to a visual
language and its more diverse types of comments. There-

Preprint submitted to Elsevier May 28, 2024

https://orcid.org/0000-0002-9881-9748
https://orcid.org/0000-0001-5127-4042
https://orcid.org/0000-0002-1509-1449
https://orcid.org/0000-0002-2582-5557
https://orcid.org/0000-0002-9881-9748
https://orcid.org/0000-0001-5127-4042
https://orcid.org/0000-0002-1509-1449
https://orcid.org/0000-0002-2582-5557

upon, we compare major characteristics of Simulink com-
ments with those in the textual programming languages
Python, Java, and Smalltalk.

In our study, we first extract a collection of Simulink
comments from a large set of open-source Simulink
projects [46]. Then, we study how Simulink projects are
commented, which comment features are used, where com-
ments are present in the model and for what purpose they
are used. We manually classify a sample of our collection
according to the existing CCTM taxonomy [39], and ex-
tend it to make it suitable for Simulink comments, yielding
the Simulink Comment Taxonomy (SCoT). We also inves-
tigate, whether model size, age, or complexity correlate
with a model’s commenting effort. As Simulink projects
often feature MATLAB code, we include the projects’
MATLAB code in our investigations where appropriate.
Then, we compare the commenting practices of Simulink
and MATLAB with the practices of the previously stud-
ied languages [39], to gauge differences and similarities
between them. Finally, we gather existing guidelines on
MATLAB and Simulink and explore whether developers
follow them.

The main findings of our study are as follows. The
Simulink comment types are used in widely varying
amounts, with Annotations being the most frequent com-
ment type, while Notes are rarely used. Simulink com-
ments are distributed evenly across all hierarchy depths,
apart from the top levels, where developers clearly put
in the most commenting effort. We found that size and
complexity of a model correlate with the number of com-
ments and amount of total comments of a model, but they
do not correlate with the length of individual comments.
This indicates that, as a model grows, developers do not
add to existing comments, but create new comments in-
stead. This underlines previous observations that Simulink
comments, once created, hardly get revised [20] and also
supports the claim that Simulink documentation becomes
“rotten” [33]. Without adapting comments to an evolving
model, developers risk that comments become out of sync
with the model – which is a well-known concern from other
programming languages [38]. We also found that Simulink
and MATLAB comment information is highly similar in
quality and quantity to previously studied comment infor-
mation in Java, Python, and Smalltalk. The comments
of all these languages cover mostly the same categories
of our taxonomy, and these categories also show a similar
distribution in all of them. This implies that, information-
wise, the commenting cultures in Simulink and MATLAB
are not much different from the textual languages Java,
Python, and Smalltalk. We view this as an indicator that
our extended taxonomy SCoT can be employed in the cat-
egorization of other programming languages. Similarly, we
expect knowledge-transfer, regarding comments, between
textual languages and visual languages and vice versa to
be possible. Further, we believe that many of our conclu-
sions generalize beyond Simulink to other languages and
their tools. While analyzing the commenting guidelines

of Simulink and MATLAB, we found only three, which
developers rarely followed.

We summarize our contributions as follows:

• a qualitative and quantitative overview of Simulink
commenting practices in a large and diverse set of
open source projects and models;

• an empirically validated taxonomy, named SCoT
(Simulink Comment Taxonomy), classifying the in-
formation of Simulink and MATLAB comments, also
applicable for other languages;

• a comparison of Simulink and MATLAB comments to
previously studied languages;

• a publicly available dataset of extracted comments
and classified comments in the replication package,1

as well as all scripts used in this work.

2. Background

2.1. Simulink

Simulink is a visual programming language developed
by MathWorks.2 Simulink offers a modeling environment
for the simulation and analysis of graphical block-oriented
models of multi-domain dynamical systems. It offers a
high versatility through its many toolboxes for different
scenarios and domains (e.g., from theoretical simulation3

to control of tangible systems,4 in as different domains
as solar power grids [11] to automotive [53]). Simulink
is a widely used modeling language for industrial-scale
cyber-physical systems [14, 26] and is widely studied by
researchers [8].

A Simulink model is a data flow graph with vertices and
edges. While the edges are represented as signal lines, the
vertices are different kinds of blocks. Figure 1 shows two
views of an example model with its blocks connected by
signal lines. Each block of a Simulink model transforms
its input signals into output signals, giving a data flow-
oriented model. A signal’s arrowhead next to a block sig-
nifies an input; the side without an arrowhead is an output
of that block.

To manage the size and complexity of a large model, it
can be divided hierarchically into subsystems. Each sub-
system can contain further blocks, lines, and other sub-
systems, recursively. Simulink then shows the view of the
model by only presenting blocks of the currently selected
subsystem and hiding blocks nested in other subsystems.
The model in Figure 1 has two views: the outer view with
its subsystem highlighted in apricot (Figure 1a) and the
view from inside the subsystem (Figure 1b).

1https://doi.org/10.6084%2Fm9.figshare.24631350
2https://www.mathworks.com/
3https://www.mathworks.com/help/mpc/ug/

control-of-an-inverted-pendulum-on-a-cart.html
4https://www.mathworks.com/help/aeroblks/

quadcopter-project.html

2

https://doi.org/10.6084%2Fm9.figshare.24631350
https://www.mathworks.com/
https://www.mathworks.com/help/mpc/ug/control-of-an-inverted-pendulum-on-a-cart.html
https://www.mathworks.com/help/mpc/ug/control-of-an-inverted-pendulum-on-a-cart.html
https://www.mathworks.com/help/aeroblks/quadcopter-project.html
https://www.mathworks.com/help/aeroblks/quadcopter-project.html

1
i

1
out1

2
out2

i

r

out1

out2

subsystem2
r

(a) The root subsystem view of the model. A subsystem is shown in
apricot , while its implementation content is hidden. The implementation
content (c.f . Figure 1b) is only hinted at on the subsystem symbol.

+
+

add

constant

square

1
i

2
r

1
out1

2
out2

multiply

(b) The view from inside the subsystem reveals the detailed implemen-
tation through all its blocks and signals.

Figure 1: Two views of an exemplary model. The model computes
the functions out1 = i + 1 and out2 = πr2. The implementation
of the functions is accessible and editable in the subsystem view in
Figure 1b and hidden from the outside view in Figure 1a.

2.2. Simulink Comments

Some early research claimed that models do not need
documentation because “models are documentation” and
models are less ambiguous than textual documentation [4].
Today, however, the need for a model’s documentation, has
become clear [33].

In this work, following the usual distinction between
internal and external documentation [2, 30, 35], we fo-
cus on internal documentation directly integrated into the
Simulink suite. Such documentation cannot get “lost” be-
cause it is in direct association with the model and will,
by necessity, be as current as the model itself. Moreover,
previous work on traditional programming languages has
shown that developers embed various types of information
in internal documentation [12, 56], which is often con-
sidered more trustworthy compared to all other sources
of documentation (such as README files, user manuals,
etc.) [29].

There are multiple ways of internally documenting
Simulink models. At the time of writing, Simulink sup-
ports the following documentation types, which we will
describe in detail below: Model Description, Element De-
scription, Annotation, DocBlock, and Note. As internal
documentation in textual languages is usually referred to
as code comments, we use the term “comment” for in-
stances of internal Simulink documentation, even though
they offer much more versatility than classical comments
in textual programming languages. In the sequel, we still
draw a comparison to textual comment types from both a
reference and a usability perspective, so that the reader can

get a better understanding. Before delving into the com-
parisons, it is important to note that these are not meant
to be scientifically rigorous analyses. Instead, they are in-
tended to offer some preliminary insights and intuition. A
comment viewed from the reference perspective is the part
or parts of a model the comment is about. Comments in
textual and visual languages are thus comparable, if they
reference comparable parts of a program or model, e.g., a
single code line and a single model element, or the whole
code file and the whole model. The usability perspective,
on the other hand, is about how developers are able to
notice, access, and edit a comment.

Model Description: A model can be given a single, des-
ignated textual description, which is only accessi-
ble after four mouse clicks in a popup window from
Simulink’s menu, and is not displayed in the main
graphical view of a model (c.f . Figure 2b). Reference-
wise, the closest analogy in classical programming lan-
guages are class comments or header comments, as
there is only a single Model Description to describe
the whole model. Usability-wise, the closest parallel
in classical languages are README files or other ex-
ternal documentation, but Model Descriptions are an
actual part of the Simulink model file.

Element Description: An element’s description is as-
sociated to its model element (block, signal, bus).
Users can describe the element, its usage, or context
in more detail. An element’s description text can only
be accessed with two mouse clicks in a separate popup
window (c.f . Figure 2c). Reference-wise, we view Ele-
ment Descriptions as most similar to inline comments,
as they refer to single model elements, which are com-
parable to a short line of code. Usability-wise, there
is no clear parallel we know of.

Annotation: An Annotation is a special area, placed in
a model. These areas are mainly used to hold textual
comments. They can also be colored and thus high-
light a part of a model or even hold images. Anno-
tations can also be linked to another model element,
so the connection stays, even if the element is moved
and the Annotation is not located nearby, anymore.
Annotations are the only comment type of Simulink
whose content is directly visible and editable in the
model view. The champagne Annotation shown in
Figure 2a highlights and explains a specific part of
the model; the light blue Annotation gives the title
of the view, further explanation, and shows various
equations. There is also a small Annotation with a
picture located on top of the light blue Annotation.
Annotations can be used for model interaction, like
holding a hyperlink to another subsystem or starting
the model’s simulation. Reference-wise, Annotations
could be used like every type of code comment, due
to their great versatility: a tiny Annotation next to

3

Current	Regulator	
(with	feedforward)

harmonic		filter	neglected

Sign	Convention:	Current	going	out	of	the	converter	=	positive	current
Id	positive	 	The	converter	generates	active	power	("Inverter
mode")	=		Active	Power	P	positive
Iq	positive	 	The	converter	absorbs	reactive	power	("Inductive
mode")	=	Reactive	Power	Q	negative	

1
VdVq_conv

−
+

Rtot_pu1

Ltot_pu1

+

+

+

+

−

3
IdIq_ref

2
IdIq_mes

1
VdVq_mes

PI_Ireg1

ANFIS

DOC
Text

DOC
Text

PI

Feedforward

(a) A model’s subsystem, featuring several comment types: DocBlocks (on the left in apricot) and Annotations (in champagne and light blue). The
Annotation in champagne color highlights a specific area of the view, while the Annotation in light blue gives general information and shows a picture.
Note the formatting opportunities, including LATEX, in Annotations.

(b) A Model Description’s content is shown and
edited in a popup window. There is only one
Model Description per model.

(c) An element (block or signal) description’s
content is shown and edited in a popup window.

(d) DocBlock content is shown and edited in an
external editor window. One may use, e.g., Mi-
crosoft Word with its features.

Figure 2: Examples of Simulink comment types.

a block like an inline comment, up to bigger Annota-
tions describing a whole view or model, like a func-
tion or class comment. Usability-wise, they mimic all
types of code comments, because of their immediacy,
while additionally text formatting, pictures, and in-
teractivity are possible.

DocBlock: A DocBlock is a special block in a Simulink
model, which holds an embedded txt/html/rtf com-
ment. As such, it can be used for longer and formatted
comments. Two DocBlocks are part of the model in
Figure 2a in apricot color. Although the DocBlock,
as a block, is part of the graphical model view, its
text can only be accessed in a separate editor window
(c.f . Figure 2d), after a double click. Reference-wise,
we view DocBlocks as most similar to function com-
ments, because the DocBlock refers to a whole sub-
system, which is comparable to a function. Usability-
wise, DocBlocks work similarly to a clickable code
comment hyperlink, which can be followed to some

external documentation (this is sometimes used in,
e.g., JavaDocs), while the DocBlock and its content
still is embedded in the Simulink model file itself.

Note: Simulink Notes are a mix of external and internal
documentation. On the one hand, they are deeply
integrated into the IDE. On the other hand, they
are saved as external documentation files, only asso-
ciated to a model file. A Note’s textual content can
be accessed with three mouse clicks in a separate ed-
itor window in the Simulink IDE, next to the model.
Notes are more powerful than the other types, as they
follow the model hierarchy. Depending on the current
view of the model, a Note can show appropriate con-
tent only concerning this view. Thus, a single Note
can be seen as a set of comments on classes or func-
tions, reference-wise. Usability-wise, there is no clear
parallel in classical languages. As our dataset lacks
instances of Notes, we don’t depict any in Figure 2.

4

2.3. MATLAB Comments

The MATLAB programming language uses textual rep-
resentation for its source code. This means, the script
files feature comments, similar to other textual program-
ming languages. As Simulink models are often combined
with MATLAB code in a project, we have the opportunity
to study comments from bilingual projects in our work.
MATLAB comments start from the %-symbol until the end
of a line, or embrace comment text in between %{ and %}
brackets for multi-line comments. Listing 1 shows parts of
a MATLAB source code file with several comments: the
first multi-line comment from lines 1 to 4 gives a title and
author information. The comments in lines 6 and 9 are
short inline comments.

1 %{
2 Logger c on t r o l f o r <p ro j e c t t i t l e >
3 <Author Name>
4 %}
5
6 % I n i t i a l i z e Log
7 i f e nab l e l o g
8 set param ('Log' , ' l o gg ing ' , 'on') ;
9 e l s e %enab l e l o g == 0

10 set param ('Log' , ' l o gg ing ' , ' o f f ') ;
11 end

Listing 1: Examplary MATLAB source code showing a multi-
line comment at the top and two shorter inline comments.

2.4. Simulink and MATLAB Comment Guidelines

We searched the official guidelines for High-Integrity
Systems (G1),5 and by the MathWorks Advisory Board
(G2),6 for instructions on how and when to comment in
MATLAB or Simulink.

While G1 aims for “models that are complete, unam-
biguous, statically deterministic, robust, and verifiable”,
it does not provide advice on Simulink comments and
gives only four guidelines regarding MATLAB comments.
himl 0001 requests to use a standardized header com-
ment, himl 0003 requests a comment density of 0.2 com-
ment lines per line of code, hisl 0038 asks for comment
preservation in generated code, and himl 0006/himl 0007

demands “meaningful” comments for if/else and switch
statements. Note that the else statement of line 9 in
Listing 1 is artificially commented by us.

One of the three aims of G2 is readability, which is fur-
ther clarified as “improve readability of functional anal-
ysis, prevent connection mistakes, comments, etc.” Still,
we only found three guidelines related to Simulink docu-
mentation: db 0140 display custom block parameters ex-
plicitly in the diagram, db 0043 use consistent fonts and

5https://www.mathworks.com/help/pdf_doc/simulink/

simulink_hi_guidelines.pdf
6https://www.mathworks.com/help/pdf_doc/simulink/

simulink_mab_guidelines.pdf

appearance settings across project, and jc 0603 comment
the model layer with a description. G2 also remarks that
‘using Annotations [to group logically related parts as vir-
tual objects] makes [the model] easier to understand’.

2.5. The Class Comment Type Model (CCTM)

Identifying the kinds of information embedded in code
comments can support developers in various development
and maintenance tasks, e.g., an automatic comment clas-
sificator or updater would need a complete taxonomy of
comment types. Therefore, researchers put a lot of effort
in classifying code comments, building code comment tax-
onomies. Based on taxonomies for textual programming
languages, like Java, Python, and Smalltalk [34, 40, 58],
Rani et al . [39] presented a taxonomy of class comments,
called the Class Comment Type Model (CCTM). Rani et
al . use the standard definition of classes in object-oriented
languages, i.e., classes represent blueprints for building in-
stances [55]. Class comments are expected to hold various
information [32, 34, 39, 40, 58], from high-level design to
low-level implementation details [32]. The CCTM can be
used to classify class comments into the following higher-
level categories:

Purpose: A summary of the code’s intent, further expla-
nation of how the code works, or its rationale.

Notice: An explicit notice of exceptions, warnings, dep-
recation, or how to use the code.

Under Development: This encompasses development
notes, notice of incomplete code parts or TODO-
notes. It could also be commented code, coding guide-
lines or recommendations for extending the code.

Style & IDE: IDE or compiler directives or a comment
that visually partitions code or comments into logical
sections.

Metadata: Metadata could be licensing information,
ownership information, or pointers to other resources.

Discarded: A higher-level category for comments that
are not further analyzed: auto generated comments,
unidentifiable (noise) comments, comments in a for-
eign language.

The six higher-level categories are divided into 20 lower-
level categories: e.g., the higher-level category Purpose
consists of the lower-level categories Summary, Expand,
Rationale. The complete breakdown of higher-level cate-
gories into categories can be seen in Table 5.

The CCTM is based on classifying comments from a di-
verse set of textual languages, which is why we assume
some generalizability to comments from other languages,
such as MATLAB and Simulink. Also, the CCTM offers
a broad spectrum with 20 categories, which makes it cur-
rently the most fine-grained taxonomy [24]. Still, it is un-
known whether the taxonomy can be directly transferred

5

https://www.mathworks.com/help/pdf_doc/simulink/simulink_hi_guidelines.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_hi_guidelines.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_mab_guidelines.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_mab_guidelines.pdf

to Simulink or non-class comments in MATLAB. In this
work, we use the CCTM as a first step to classify Simulink
and MATLAB comments and complement it with missing
categories to build our taxonomy SCoT, which is also ap-
plicable to non-class comments and visual languages like
Simulink.

3. Methodology

3.1. Research Questions

The goals of this study are to explore the landscape of
comments in Simulink projects, to understand how com-
ments are used and what information they embody, and to
establish a mapping of commenting practice in Simulink
projects and textual programming languages. With this in
mind, we design our research questions (RQs), and explain
them in this section. Our focus is on Simulink models, as
MATLAB is a textual language featuring comments that
are similar to other textual programming languages. To
put our findings for Simulink in context of those more well-
understood languages, we also analyze MATLAB code
from the bilingual projects of our dataset, similarly to
Simulink, except for RQ 2.

RQ 1: How are Simulink projects documented?

There exist various types of comments in model-based
development environments, such as Simulink (see Sec-
tion 2.2). Not all types of comments are expected to be
used in the same frequency. We give a breakdown of the
usage frequency of Simulink’s comment types. As Simulink
models can consist of various subsystems (or layers of sub-
systems), the comments can also be present in various lay-
ers of these systems. However, whether certain layers tend
to be more commented than others and with which com-
ment types is unknown. We analyze this information at
all levels of depth. During our work, we found many com-
ments to be have identical comment texts (type I com-
ment clones [5]), in some cases hundreds of times. We
refer to such comments as duplicates and investigate pos-
sible duplication sources of heavily duplicated comments
further. Finally, we investigate, whether developers follow
the guidelines we collected in Section 2.4.

With RQ 1, we aim to answer, which comment types
are typically present in models, learn their basic charac-
teristics and where they are used.

RQ 2: Does the amount of documentation vary in differ-
ent models?

Prior research searched for correlations between the
amount of comments and other project characteristics in
textual languages: e.g., correlations exist between the
number of comments and number of issues in the code [31],
but no correlation between number of comments and num-
ber of project authors has been found [15]. However, to
the best of our knowledge, it is currently unknown whether

a model’s age, size, and complexity and amount of com-
ments show a correlation. With this knowledge, we can
better gauge the importance of comments in big, mature,
and complex models. Also, with such correlations estab-
lished, comment smells [21] could be derived: developers
should potentially revise the comments of strong outliers,
e.g., if a model grew very large but is still hardly com-
mented.

RQ 3: How can the content of Simulink comments be
classified?

As comments can cover many topics, e.g., summary, us-
age tips, licensing information etc. we aim to understand,
what they are employed for in Simulink and MATLAB. To
this end, we classify Simulink and MATLAB comments,
using the CCTM taxonomy by Rani et al . [39] from Sec-
tion 2.5. We analyze the commenting practices in terms of
what information is embedded inside different comments,
such as Summary, Warning, Copyright notice, etc. Please
note, the CCTM is a Class Comment Type Model. While
our MATLAB samples feature a few class comments, most
are in fact inline comments. Simulink, does not even fea-
ture classes, but offers various comment types (see Sec-
tion 2.2). Thus, MATLAB and Simulink comment infor-
mation may fall outside the current CCTM taxonomy.

Based on this step, we propose an extended taxonomy
SCoT for MATLAB and Simulink that encompasses com-
ments from textual and visual languages.

RQ 4: How does Simulink documentation compare to tex-
tual programming languages?

While the first three RQs focus on Simulink projects and
exclusively on their languages Simulink and MATLAB, we
also want to put these findings into context of previously
studied languages. Simulink comments, with their vari-
ous comment possibilities in a visual programming lan-
guage, may differ significantly from textual programming
languages. Depending on the results of our comparison,
Simulink and MATLAB may have to be treated separately
in documentation research or could be treated similarly to
textual languages in some contexts.

3.2. Study Subjects and Data Collection

3.2.1. Data Set and Sample

To collect Simulink model comments and MATLAB
comments, we use the SLNET set by Shrestha et al . [46].
Their set contains 2,833 Simulink projects, consisting of
9,095 Simulink models (we could analyze 9,033 models
successfully, i.e., our analysis scripts ran error-free) and
17,792 MATLAB source code files. Shrestha et al . curated
open source Simulink projects from GitHub and MATLAB
Central.7 The projects thus represent a highly diverse data

7https://www.mathworks.com/MATLABcentral

6

https://www.mathworks.com/MATLABcentral

set, comprising a range of tiny toy projects up to industry-
like projects from various domains [7]. The SLNET set has
been used in prior work for replication studies or learning
about Simulink bus usage [3, 47]. We use the complete
SLNET set to answer RQs 1 and 2, and have not excluded
any comments, as we want to give a holistic overview of
comments.

To answer RQ 3, we manually analyze a uniformly sam-
pled subset of SLNET comments, as no automatic classifier
exists for MATLAB or Simulink, yet. We thus choose the
same sampling strategy as was used to create the CCTM
taxonomy (see Section 2.5). We compute our sample size
n, required to estimate population proportions of finite
populations, according to the standard Equation (1) given
by Triola et al . [51]:

n =
z2p(1−p)

e2

1 + z2p(1−p)
e2N

(1)

We choose our confidence level of 95% and thus the er-
ror e = 0.05, and z = 1.96. The value of p defaults to
0.5. We give a breakdown of sampled comments for each
type of comment in the last column of Table 1. To get a
better overview of the full breadth of comments, we dedu-
plicate the SLNET comment set, before we sampled from
it. After deduplication every comment has a unique com-
ment text. This ensures that our results are not dominated
by comments that are automatically generated, imported
from libraries, or copy-pasted numerous times. We then
use our manual analysis results of RQ 3 to answer RQ 4.

3.2.2. Extraction of Simulink Comments

We analyze each model of the SLNET set element by
element to check for the presence of comments (c.f . Sec-
tion 2.2). For each comment, we note relevant metadata,
the main ones being the type of the comment (Element
Description, DocBlock, etc.), the comment text and its
length in chars, and the nesting depth in the subsystem
hierarchy.

In this first step, we found only 11 instances of Simulink
Notes. As there are so few of them, we investigated them
manually: five of them were automatically generated, the
Simulink IDE was unable to load another five, and the
last one was just a test Note. Because of this, we did not
sample Simulink Notes for the manual analysis of RQ 3.

In the SLNET set, we found many duplicated comments
(i.e., comments with identical text). Based on Blasi et al .
[5] and our observations, we suspect duplications coming
from (i) a duplication process like copy-paste/cloning (in-
dividual comments, file duplications, or project forking),
(ii) generic comments being located in multiple locations
of a model (e.g., copyright notice) or very short comments
likely to appear more than once, due to the limited infor-
mation they hold, (iii) library imports, (iv) generation by
the IDE, and (v) synthetic generation. To not skew our
results by heavily duplicated comments, we sample from a
subset of deduplicated comments, only.

We further found that some comments stem from Math-
works’ libraries or toolboxes. As they are part of the
models – many toolboxes are open source projects in the
SLNET set themselves – we do not exclude them from our
sample. Due to the deduplication step described previ-
ously, such library comments are not overrepresented in
our sample. Our sample set for manual analysis incorpo-
rates 374 Simulink comments. Table 1 gives an overview
of the number of different comments, the cardinality of
comment texts, and how many we sampled.

3.2.3. Extraction of MATLAB Comments

In the 2,833 projects of SLNET, there are 17,792 MAT-
LAB source code files. In 14,642 of them, we found at
least one source code comment. For the manual analy-
sis, we sample from the deduplicated subset, which results
in 383 MATLAB comments. Table 1 gives an overview
of the number of MATLAB comments, the cardinality of
comments, and how many we sampled.

3.2.4. Computational analysis

We extracted the Simulink comments and their meta-
data (see Section 3.2.2) directly from the models them-
selves with a MATLAB script. For this, we iterated over
the whole model set, and within each model. We first col-
lected a potential Model Description, all Annotations, and
DocBlocks. Furthermore, we iterated over every model el-
ement and inspected it for a possible Element Description.
We kept track of each comment and its metadata for fur-
ther analysis steps.

We gathered the MATLAB comments using a Python
script. We fused successive lines only containing comments
to a single comment, even when the developers do not use
the ‘official’ multi-line method of bracketing the comment
between %{ and %}. We did this, as the multi-line feature
is not often used and developers tend to fall back to start-
ing each line of their multi-line comment with a simple %

symbol, even for very long comments.
All Simulink and MATLAB comments we found are

gathered in .json-files, which we then analyzed further
with Python scripts for RQs 1, 2 and 4.

3.2.5. Manual Classification Process

To answer RQ 3, we first gathered the sampled com-
ments into a shared Google sheet8 for a collaborative clas-
sification process. Three researchers (a postdoctoral re-
searcher and two Ph.D. candidates) participated in the
classification process. We used the same three-step clas-
sification process as was employed by Rani et al . [39]:
we split up the samples in a way that each comment is
classified by one researcher in the first step. Next, an-
other researcher reviewed the first classification and pos-
sibly proposed changes to the classification. The original
researcher then accepted or rejected the proposed changes

8https://www.google.com/sheets

7

https://www.google.com/sheets

of the reviewer. If changes were rejected (if both evalu-
ators disagree), a third researcher reviewed the comment
and gave a final verdict on the classification. During classi-
fying and reviewing, we kept track of missing classification
categories, to expand or refine the CCTM taxonomy, by
new categories, we observed. For example, Simulink con-
tains some comments that have interactive features, for
which we created a new Interactive category. For that pur-
pose, all three researchers discussed their disagreements in
the classification/reviewing process, as they are an indica-
tor of the potential taxonomy refinement or extension. We
also noted, how many comments needed a second or third
review, to gauge our inter-rating conformity. This pro-
cess yielded our taxonomy SCoT, in the same way as the
taxonomy CCTM (see Section 2.5) was built.

In answering RQ 4, we use our findings of RQ 3 and com-
pare the similarity of Simulink and MATLAB commenting
practice with findings of studies that used the CCTM to
classify Java, Python, and Smalltalk by Rani et al . [39].

4. Results

In this section, we describe the results of our study struc-
tured by research question; the discussion follows in the
next section.

RQ 1: How are Simulink projects documented?

Table 1: The absolute number of each comment type found in the
SLNET set for Simulink models and MATLAB source code files,
is shown in the comments column. The deduplicated numbers are
given in the middle column. The number of sampled comments for
our manual analysis is given in the last column.

Comment Type comments |comments| sampled

Simu-
link

Model Description 2,088 521 16
374

Element Description 5,303 287 3
Annotation 91,027 11,348 348
DocBlock 308 129 7
Note 11 6 0

MAT-
LAB

Class Comment 472 354 3
}
383

Other Comment 159,957 75,589 380

General Measurement and Properties

We counted the total number of each comment type in
Simulink models and MATLAB source code files, and de-
pict the results in the second column of Table 1. As can be
seen, Annotations make up the overwhelming majority of
Simulink comments, with over 90k instances in our 9,033
Simulink models. All other comment types combined only
add up to about 7.7k instances.

Almost all MATLAB comments are non-class com-
ments. In the 552 MATLAB classes of our source code
files, we found 472 of the classes to have a class comment,
though.

As can be seen when comparing the absolute
(comments) and cardinality (|comments|) columns of Ta-
ble 1, many comment texts are duplicated in our set (e.g.,
around 88% of the Annotation texts are duplicates). From
the class comments in our set, on the other hand, only 25%
are duplicates, while over half of the non-class comments
are.

Comment Duplication and Duplication Reasons

To get a better understanding of comment duplicates
(or clones) in Simulink and MATLAB, we present a scat-
ter plot of duplicates in Figure 3. In the graph, the
left-most comments are unique, while the right-most are
heavily duplicated. The x, y-position of a marker repre-
sents that there are y different comments which are dupli-
cated x times in our dataset. For example, more than 50k
non-class comments from MATLAB are unique (dark blue
marker at x = 1, y = 54, 287), while the next marker at
x = 2, y = 11, 598 indicates that more than 10k comments
of that type are duplicated exactly once; the last marker
at x = 1, 524, y = 1 represents one comment which was
duplicated 1,523 times.

As can be seen in Figure 3, there are many duplicates
(all comments with x > 1), with some comments dupli-
cated dozens or in a few extreme cases more than a thou-
sand times, such as Simulink Annotations or MATLAB’s
non-class comments. Such heavily duplicated comments
are overall rare on the other hand, i.e., the higher the du-
plication count of a comment, the lower the chance that
there is another comment with a similarly high duplication
count. This can also be seen at the sparsity of markers
of most types for higher duplication counts. In fact, ev-
ery comment type, except Element Descriptions, has more
unique comments than those that have at least one dupli-
cate. In other words: the first marker’s y value of a type
is higher than all the others combined.

To understand the duplication phenomenon better, we
sampled the ten most duplicated comments of each cate-
gory in Table 3 (represented by the right-most markers of
each type in Figure 3). One can immediately see that some
comments that occur most often are also highly similar,
e.g., the copyright notices in Model Descriptions: 1,773 of
our 2,088 Model Descriptions are a MathWorks copyright
notice.
For all comments of Table 3, we identified the duplication
origins, i.e., why the comment’s text appears more than
once. Based on our manual analysis, we hypothesized five
types of duplication origins (based on [5] and our observa-
tions):

generic: a comment’s text is very short or non-specific,
making it likely that it appears more than once, e.g.,
all Element Descriptions listed in Table 3,

copy-paste: the comment or the comment text was copy-
pasted within the model or from model to model, e.g.,
the most copied DocBlock of Table 3,

8

library: the comment is part of a library (only possible
for Element Descriptions, DocBlocks, Annotations),
e.g., all Annotations of Table 3,

IDE generated: the comment or comment’s text was
generated via the IDE (i.e., the IDE starts stubs for
the user to fill in, or gives generic info), e.g., “UN-
TITLED Summary of this class goes here \nDetailed
explanation goes here,”

synthetically generated: we found a number of com-
ments in MATLAB code that were synthetically gen-
erated. In fact, in all instances of synthetically gen-
erated comments we observed, the complete code
files were synthesized, e.g., “rad” and “Translation
Method - Cartesian.”

We often could not confidently categorize whether a com-
ment was copy-pasted or just generic as we only observe
the final identical texts and not the duplication process,
and thus conservatively united the categories in Table 2.
Only a few of the heavily duplicated comments are gen-
erated by the IDE or synthetically. Overall, one can see
a divergence in the categories generic/copy-paste, library,
and synthetically generated for the different types. The
last column of Table 2 shows that taking only the top
ten most duplicated comments, e.g., Element Descriptions,
represents already a high percentage of all comments of its
type. This fact gives another perspective to interpret Fig-
ure 3.

Table 2: Overview of the ten most duplicated comments’ duplication
reason per comment type. The last column shows the ratio of top
ten duplicates and the total number of comments of that type.

Comment
Type

Generic/
copy-paste

Library IDE synthetic top10
all

Model descr. 10 0 0 0 0.42
Element descr. 4 6 0 0 0.59
Docblock 7 3 0 0 0.53
Annotation 0 10 0 0 0.18

Class comment 9 0 1 0 0.17
Other comment 4 0 0 6 0.05

total 34 19 1 6 0.11

Comments at Different Levels of the Subsystem Hierarchy

We give a breakdown of the commenting practices at
different levels of depth of the subsystem hierarchy in Ta-
ble 4. We define Model Descriptions to occur at the hy-
pothetical depth 0 to include them in the table. One can
see that most Element Descriptions are located at depth 4
and Annotations peak at level 3. DocBlocks are the only
comment type with two local maxima at level 1 and level
7, respectively. In absolute terms, most comments occur
at depth 3, while deduplicated, most comments lie at the
root level (depth 1).

While the ratio of comments per subsystem is highest
at the root level, the Model Descriptions at depth 0 lead

to the highest ratio of comments per element. The ratio
of comments per subsystems drops from depths 1 to 4,
stabilizing afterward.

Comparing the columns of comments and |comments|
shows that the highest ratio of original comments can be
found in the upper levels, with 75% of Model Descriptions
and less than 50% of the comments at the root level being
duplicates. At the other extreme are depths 10 or more,
with > 98% duplicated comments, which is why we cut
them from Table 4.

To not skew our analysis of comment lengths, we used
only the deduplicated comments to compute the mean and
median lengths in the last two columns. At all depth levels,
the mean length (denoted by x̄len in Table 4) of a com-
ment is longer than its median (denoted by Mlen), indicat-
ing a positive-skew (right-tailed distribution) of comment
lengths. The mean length of Model Descriptions (depth
0) is much longer than any other comment. Similarly, the
root level’s mean comment length is about twice as long
as on deeper levels of the subsystem hierarchy. Median
lengths do not show a clear trend, with only the Model
Description, again, being much longer than the rest.

As Annotations can both be containing text of various
lengths, but can also be highlighting areas without text, we
analyzed how Annotations are primarily used. We found
that very few (0.2%) of the Annotations are highlight-
ing an area only, i.e., not holding a single comment text
character. If used, such area-only Annotations are often
highlighting a group of blocks (and not only empty model
canvas). Overall, there are also few (8.1%) Annotations,
containing one or multiple blocks, showing that most of-
ten Annotations are used as a purely textual companion,
next to other model elements. Those Annotations that
contained blocks usually hold a comment that is 10 to 100
characters long.

Comment Guidelines

We investigated, whether developers followed the guide-
lines we gathered in Section 2.4. We skipped those guide-
lines that are not objectively measurable: guidelines con-
cerning comment appearance and formatting, subjective
guidelines about “meaningfulness” of comments; or guide-
lines regarding generated code, unobservable for us.

himl 0001 (standard header comment) No source code file
of our data set features the standard header of G1.

himl 0003 (comment density: 0.2 comment lines per line
of code) We observed a higher mean of 0.271 comment
lines per line of code, and a median of 0.25.

jc 0603 (model description) We found only 2,088 of 9,033
models having a Model Description, while many of
them are generic or copy-pasted duplicates, see Ta-
bles 1 and 2.

9

Table 3: The most duplicated comments in our data set listed by type. We marked shortened comments by [...], and new lines by \n.

Comment number of
Comment Text

Type occurrences

Model
Description

247 Copyright 2017-2018 The MathWorks, Inc.
117 Copyright 2014-2018 The MathWorks, Inc.
95 Thomas Modules
77 Copyright 2015-2018 The MathWorks, Inc.
75 Copyright 2014-2017 The MathWorks, Inc.
73 \nCopyright 2014-2016 The MathWorks, Inc.
68 \nCopyright 2009-2018 The MathWorks, Inc. MathWorks, Inc.
45 \nCopyright 2015-2017 The MathWorks, Inc.
42 \nCopyright 2014 The MathWorks, Inc.
39 \nCopyright 2013 The MathWorks, Inc.

Element
Description

748 Initialise
436 Output Signal
342 Input Signal
321 \nStore in Global RAM
259 Add in CPU
222 source block
200 Trigger
197 Fader Output
196 Lower Limit
196 Upper Limit

DocBlock

51 This subsystem computes the surge, sway, heave, roll, pitch and yaw motions of the center of the body [...]
51 This subsystem computes the elevation of the sea wave, where the sea wave spectrum is given by [...]
17 These are the Wave Excitation Forces computed by WAMIT-Demo version \nthe angle is between [...]
11 jza - 21.08.07 The test model is created manually. \n\nTransformation rules for test data variants [...]
8 Integral de sinal seno = sinal -coseno
7 **Steps to Create a Quartus VHDL project****Simulink Steps**1. Setup all the paths
6 Some text about the spec. . . \n
5 Derivation of State Space model from original equations
4 By testing SyD, you will be able to discover its advanced features and advantages
2 Synchronous machine\r\n>>> Power conserving transformation

Annotation

3,840 The Measurement is not modified
1,837 Pierre Giroux, Gilbert Sybille\nPower System Simulation Laboratory\nIREQ, Hydro-Quebc
1,725 1) Only subsystems can be added as variant choices at this level\n2) Blocks cannot be connected at this [...]
1,539 =
1,464 Graphical user interface for the analysis of\nSimscape Power Systems \nPlace the Powergui block in the [...]
1,434 *
1,196 U(k)
1,090 [d\n q]
1,090 [al\n be]
954 Integrator

Class
Comment

15 Author: Colin Eles elesc@mcmaster.ca \n Organization: McMaster Centre for Software [...]
12 Copyright 2014 The MathWorks, Inc.
8 Author: Matthew Dawson matthew@mjdsystems.ca\n Organization: McMaster Centre for [...]
8 Copyright (c) 2016, The MathWorks, Inc.
8 %%% [...]
7 Copyright 2014 - 2016 The MathWorks, Inc.
7 CONNECTIVITYCONFIG PIL connectivity configuration class\n\n Copyright 2018 Arm Holdings
6 %%% [...]
6 UNTITLED Summary of this class goes here \nDetailed explanation goes here
5 Copyright 2017 The MathWorks, Inc.

non-Class
Comment

1,524 \n
1,368 rad
1,359 Translation Method - Cartesian\nRotation Method - Arbitrary Axis
1,130 in
954 m
594 Las unidades de la resistencia son ”Ohmios”.
531 User supplies all inputs
431 kg*mˆ2
398 Inertia Type - Custom\nVisual Properties - Simple
398 %

10

1
(unique)

2
(duplicated

once)

10 100 1,000

1

10

100

1,000

10,000

Duplication count x

#
D
iff
er
en
t
it
em

s
w
it
h
d
u
p
li
ca
ti
on

co
u
n
t
x

Model Descriptions
Element Descriptions
Annotations
DocBlocks
Class Comments
Other Comments

Figure 3: Scatter plot of duplication counts and the number of their occurrences. Note: both the x–axis and y-axis are logarithmic.

Table 4
Occurrences of Simulink comments (except Notes) at different subsystem depths.

1 Mean and median lengths in chars of the row-wise deduplicated |comments|. 2 Each model is counted as one subsystem and element at
depth 0 for Model Descriptions. 3 The only subsystem at depth 1 is the root subsystem.

depth
Model

Descriptions
Element

Descriptions
Annotations DocBlocks comments comments

subsystem
comments
elements

|comments| x̄1
len M1

len

0 2,088 0 0 0 2,088 0.232 0.2312 521 174.91 71
1 0 622 10,965 132 11,719 1.303 0.016 6,202 98.98 32.0
2 0 875 13,425 24 14,324 0.32 0.007 3,162 57.41 17.0
3 0 1,333 16,260 25 17,618 0.24 0.007 2,091 54.30 22
4 0 1,925 12,750 8 14,683 0.17 0.005 1,257 52.55 22
5 0 431 13,404 0 13,835 0.18 0.006 869 55.49 23
6 0 90 10,436 17 10,543 0.21 0.006 536 58.41 24.0
7 0 20 6,909 68 6,997 0.22 0.006 263 60.48 30
8 0 6 3,220 34 3,260 0.10 0.003 81 71.01 41
9 0 1 2,317 0 2,318 0.17 0.007 58 48.40 38.0

total 2,088 5,303 91,027 308 98,726 0.23 0.007 12,255 85.84 30

11

RQ 1: How are Simulink projects documented?

Annotations are the most used Simulink comment fea-
ture, while Notes are barely used. In MATLAB, there
are few class comments. All types of comment show
high numbers of duplicates, but each comment type
(except Element Descriptions) has more unique com-
ments than comments with at least one duplicate.
Simulink models have the highest comment density at
model and root level of the subsystem hierarchy for all
comment types; the longest, least duplicated comments
are also there. At lower depths, comments are often du-
plicated, but the density or comment length does not
drop off. Few comment guidelines exist for Simulink
or MATLAB; most not objectively measurable. MAT-
LAB is commented more than guidelines demand, few
models come with a model description, and the stan-
dard header is not featured in MATLAB code.

RQ 2: Does the amount of documentation vary in differ-
ent models?

Here, we compute the correlation matrix of model size,
cyclomatic complexity [43], and age as well as amount of
model comments. We break down model size into over-
all number of model elements (blocks, signal lines) and
number of subsystems, and use a model’s age as a proxy
for its time under development. We also break down ‘the
amount of comments’ into number of comments, the total
comment length in chars of a model, and the mean and
median comment lengths of a model.

The correlation matrix of these metrics is given in Fig-
ure 4. As none of our metrics are normally distributed, we
employ Spearman’s rank correlation coefficient. We only
consider higher correlations between two metrics, and ig-
nore weak correlations ρ < 0.3 or too low significance levels
of p < 0.05 (note: p ̸= ρ).

Most correlations are significant: strong correlations are
shown in color, weak correlations in gray. A few corre-
lations are insignificant, shown in white. Only a single
negative, albeit somewhat weak, correlation is present be-
tween the number of comments and the median comments’
length of a model. There are only two comment metrics
showing correlations to the model size, complexity, or age
metrics: number of comments and total number of com-
ment chars of a model. Lastly, time under development is
uncorrelated to any other metric we measured.

Spearman’s correlation only measures correlations of
ranks and not of actual values. This is why we also give
an overview of the distributions of the metrics of maturity
and comment elaborateness, which show a strong positive
correlation in Figure 5. This shows, whether the values
also grow somewhat similarly. For each of the metrics,
we give the mean value of each quintile of their distribu-
tion. For example, if one sorts the models by the number
of elements (the left-most five bars), the quintile of small-
est models only has 11 elements in the mean, while the

N
u
m
b
er

of
el
em

en
ts

N
u
m
b
er

o
f
su
b
sy
st
em

s

C
y
cl
o
m
at
ic

co
m
p
le
x
it
y

T
im

e
u
n
d
er

d
ev
el
op

m
en
t

N
u
m
b
er

o
f
co
m
m
en
ts

T
o
ta
l
co
m
m
en
t
ch
a
rs

M
ea
n
co
m
m
en
t
le
n
gt
h

M
ed
ia
n
co
m
m
en
t
le
n
g
th

Number of elements 1 0.91 0.63 0.59 0.51
Number of subsystems 0.91 1 0.59 0.56 0.52
Cyclomatic complexity 0.63 0.59 1 0.49 0.49
Time under development 1
Number of comments 0.59 0.56 0.49 1 0.70 -0.31
Total comment chars 0.51 0.52 0.49 0.70 1 0.62 0.33
Mean comment length 0.62 1 0.83
Median comment length -0.31 0.33 0.83 1

-1 -0.3 0.3 1

Figure 4: Heatmap of rank correlations of maturity metrics and com-
ment amount metrics. Weak correlations with |ρ| < 0.3 are depicted
in gray, and insignificant correlations with p < 0.05 are shown in
white.

second quintile’s models are bigger with 38 elements, etc.
One can see that all metrics from our selection are strongly
positive-skewed, as they grow from quintile to quintile even
with our logarithmic y-axis. The last quintile features a
“growth spurt” for all metrics. This “growth spurt” is es-
pecially drastic for the number of elements, subsystems,
and comments. While none of the metrics is a complete
outlier in terms of growth, one can see that the complexity
does not grow as fast as the other metrics. Similarly, one
can see that the total comment length does not keep up
with the growth in the upper quintiles. Finally, this chart
shows that most models only have a handful of comments,
overall.

RQ 2: Does the amount of documentation vary in dif-
ferent models?

The number of total comments and total comment
length of a model grows as the model grows in
size (number of elements/subsystems) and complexity.
Other correlations are either weak or insignificant. In
particular, time under development does not correlate
to any other metric we measured.

RQ 3: How can the content of Simulink comments be
classified?

Deriving SCoT from CCTM

While working on RQ 3, we started by adapting the
CCTM’s terms slightly to fit our context. This means
that we changed terms like “source code” to “model” for
Simulink, and adjusted terms of the CCTM only referring
to “classes”. We also decided on clear boundaries to dif-
ferentiate between the categories Summary and Expand.

12

#
el
em
en
ts

#
su
bs
ys
te
m
s

C
om
pl
ex
ity

#
co
m
m
en
ts

to
ta
l c
ha
rs

1

10

100

1000

1
1
.4

1
.1

2
.5

1

2
6
.73
8
.2

2
.9

4
.2

1
.5

8
11

0
2
.8

7
.9 8
.5

3
.2

2
1
6
.43
3
5
.7

2
3
.9

2
1

6
.9

5
0
1
.1

3
,1

1
3
.9

1
9
8
.7

8
7
.4

6
3
.6

3
,4

8
5
.9

M
ea
n
n
u
m
b
er

o
f
o
cc
u
re
n
ce
s
fo
r
q
u
in
ti
le Q1

Q2
Q3
Q4
Q5

Figure 5: Mean quintile values of metrics that showed correlation.

In the CCTM, a Summary is a brief description of func-
tionality and purpose, covering the question word ‘what’.
The Expand category is used to provide more details on
the code to answer the question word ‘how’. In practice,
we found it hard to differentiate these categories and thus
decided on a more objective criterion. To this end, we
defined the category Summary to be a title of a module
or summarizing at least 10 model elements or source code
lines, while being at most 3 sentences long. We used the
Expand category for the remaining candidates that were
longer or described fewer elements/lines.

A few of our classified comments in Simulink and MAT-
LAB did not fit in any prior CCTM category. To classify
these comments accurately, we introduced five new cate-
gories (shown in italics in Table 5):

IDE Hint: (higher-level category notice) an instruction
of how (not) to use the IDE to achieve certain results.

System Requirements: (notice) description/list of
hardware or software requirements that make it
possible to use the artifact and all its features.

Version History: (metadata) a description of older ver-
sions, version names, and dates of changes. This cat-
egory is partly covered in the Deprecation category in
the CCTM.

Interactive: (media) a comment which helps developers
to interact with the program or IDE, such as inter-
active buttons in a comment that start or stop the
simulation of a Simulink model.

Picture: (media) a picture, illustration, or figure for doc-
umentation purposes, such as a screenshot or example
output.

Note that we created a new higher-level category Me-
dia, which is easily extendable for different kinds of media;
other languages may use for documentation, e.g., audio,
video, etc.

While classifying, we came upon calls to action like “in
case of bugs, please contact us at adress@mail.host”. We
expanded the Ownership category to cover such contact
requests instead of creating a new category.

In the classification process, we decided to discard non-
English text, as we could not ensure our complete under-
standing in categorizing such comments. We found text in
Japanese, German, Dutch, and Spanish showing the diver-
sity of the Simulink and MATLAB communities. As can
be seen in Figure 6, the Discarded category was one of the
smallest for both languages.

Simulink and MATLAB Comment Information

The detailed results of our manual classification of
Simulink and MATLAB comments are listed in Table 5. It
can be seen that the lower-level categories Summary and
Expand (from Purpose) are most often utilized, with the
categories Usage and Ownership still being used for more
than a tenth of comments. Overall, 22 categories are cov-
ered by our samples (19 by Simulink, 16 by MATLAB). We
do not show the CCTM categories Deprecation, Incomplete
and Directive in Table 5, as we found no instances of them
in any of our samples.

From the 374 Simulink comments we analyzed, 59 cov-
ered more than one category. Many of such multi-topic
comments were visually split into different parts by line
breaks, where one part covered, e.g., a License Informa-
tion, followed by a Summary. Overall, we used 458 cate-
gory classifications for our 374 Simulink comments (1.22
categories per comment). In MATLAB’s 383 comments,
on the other hand, 108 comments covered more than one
category, totaling 630 categories (1.64 categories per com-
ment).

An aggregation into higher-level categories of Table 5 is
shown in Figure 6. While Purpose dominates across both
Simulink and MATLAB, Notice, and Style/IDE still cover
more than every seventh comment in each language.

13

adress@mail.host

Table 5: Detailed overview of the manual classification of our sample
set: 374 Simulink and 383 MATLAB comments. The columns add
up to more than 374 or 383, because a single comment can cover
multiple categories. New categories of our taxonomy are printed in
italics and unused categories of the CCTM are not shown.

Higher-level Category Category Simulink MATLAB

Purpose
Summary 118 108
Expand 131 235
Rationale 11 17

Notice

Usage 93 56
Exception 2 0
IDE hint 2 0
System requirements 0 5

Under Development

Development notes 11 17
Todo 0 2
Commented code 1 35
Coding guidelines 1 0
Extension 1 0
Recommendation 1 2

Style & IDE Formatter 6 30

Metadata

License 0 9
Ownership 35 49
V ersion history 6 19
Pointer 16 25

Discarded
Auto generated 1 2
Noise 15 19

Media
Interactive 6 0
Picture 1 0

Pu
rp
os
e

N
ot
ic
e

U
nd
er
de
ve
lo
pm

en
t

St
yl
e/
ID
E

M
et
a
da
ta

D
isc
ar
de
d

M
ed
ia

0

10

20

30

40

50

60

70

80

6
5
.2

4

2
5
.9

4

4
.2

8

1
3
.9

3
.7

4

1
.6

1
.8

7

8
2
.7

7

1
4
.8

8

7
.8

3

1
6
.1

9

1
4
.3

6

5
.4

8

0

Simulink
MATLAB

Figure 6: Higher-level category distributions of our sampled com-
ments of Simulink and MATLAB. Note that the percentages sum up
to more than 100%, because a single comment can cover multiple
categories.

RQ 3: How can the content of Simulink comments be
classified?

The CCTM taxonomy is mostly applicable to Simulink
and MATLAB. We added the categories IDE Hint,
System Requirement, Version History, Interactive, and
Picture, while the categories Incomplete Comment, Di-
rective, and Deprecation were not applicable. This
yields our taxonomy SCoT. Simulink and MATLAB
both cover nearly the full breadth of the CCTM tax-
onomy. Comments from the Summary, Expand, Us-
age, and Ownership categories dominate in both lan-
guages. Simulink comments are more narrowly focused
per comment, as, on average, each comment cover only
1.2 categories, while a MATLAB comment covers 1.6
categories.

RQ 4: How does Simulink documentation compare to tex-
tual programming languages?

S
u
m
m
ar
y

E
x
p
a
n
d

R
at
io
n
al
e

D
ep
re
ca
ti
on

U
sa
ge

E
x
ce
p
ti
on

D
ev
el
op

m
en
t
n
ot
es

T
o
d
o

In
co
m
p
le
te

C
om

m
en
te
d
co
d
e

C
o
d
in
g
g
u
id
el
in
es

E
x
te
n
si
o
n

R
ec
om

m
en
d
at
io
n

D
ir
ec
ti
ve

F
o
rm

at
te
r

L
ic
en
se

O
w
n
er
sh
ip

P
o
in
te
r

A
u
to

g
en
er
at
ed

N
oi
se

Simulink
Matlab
Python
Java

Smalltalk

0 50 100

Figure 7: Heatmap comparing our CCTM categorization (high-
lighted in bold) and previously categorized languages. The categories
of the CCTM are listed horizontally, while the color scheme depicts
how many percent of comments fall into a category.

This question is partly answered by our answer to RQ 3:
we employed the CCTM taxonomy, with only slightly
adjusting descriptions of the categories and adding five
seldom-used categories to the pre-existing category set.
This shows that comments in textual and visual languages
mostly cover the same categories.

A comparison over the distributions of classifications is
shown in Figure 7. To make a comparison between the
different languages possible, we use the category mapping
found in Fig. 8 of Rani et al . [39]. The top rows of Figure 7
are very similar to a heatmap version of Table 5. The dif-
ference is that we use another category set in Figure 7: (1)
we do not show our new categories as these were not part
of the CCTM and could not have been found in Python,
Java, or Smalltalk by definition, (2) we include categories
that were used for Python, Java, or Smalltalk, which we
did not find in our samples from MATLAB or Simulink.
Overall, one can see a similar distribution between the

14

languages, e.g., the categories Summary, Expand, and Us-
age are heavily used in all languages. From the languages
studied in this work, we found that they lack in Exception
comments, compared to the other languages. MATLAB
features more Commented Code and Formatter, than all
other languages.

In RQ 3, we reported that, on average, a Simulink com-
ment covers 1.21 categories, while MATLAB comments
cover 1.64 categories. These results compare to the pre-
viously studied languages as follows: Python 2.23, Java
2.47, and Smalltalk 2.91 (derived from data of Rani et al .
[39]).

RQ 4: How does Simulink documentation compare to
textual programming languages?

Simulink and MATLAB comments cover mostly the
same breadth of categories as Python, Java, and
Smalltalk comments. In addition, each lower-level cat-
egory was chosen similarly often for each language.

5. Discussion

In this section, we discuss our main findings, new in-
sights, and possible implications, structured by research
question.

RQ 1: How are Simulink projects documented?

General Measurement and Properties

We found that Annotations are the most common com-
ment type in Simulink by far. This could be due to Anno-
tations being the only type of comment showing the con-
tent directly in the model window. While adding a new
Annotation, developers do not have to switch to another
window and can use Annotations for several purposes (c.f .
Section 2.2) directly in the Simulink IDE. Readers of An-
notations are also directly aware of the presence of Anno-
tations and are able to read their content without opening
a new window, as they would have to do with the other
comment types. This impediment may explain the relative
lack of instances of DocBlocks, Element Descriptions, and
Notes. An additional reason for Notes is that they are the
newest commenting feature in Simulink, only present since
2018, with the SLNet dataset [46] being gathered in 2020.

With 1,773 of 2,088 Model Descriptions featuring a
MathWorks copyright notice in our data set of 9,033 mod-
els, we find the Model Description feature mostly unused,
outside of MathWorks models.

In our view, some comment types in Simulink show us-
ability shortcomings: comment types whose presence is
not indicated to users immediately (Model Description,
Element Description, Notes), or their content not directly
accessible (DocBlocks) are hard to handle, or it is cum-
bersome to discover their existence. For example, users
have to perform two clicks to see whether an element has
a description, or not. We doubt that users would try to

find out one by one which elements of a model contain an
Element Description. A Model Description requires four
mouse clicks to access, but there is only one Model De-
scription per model, giving it a central place. DocBlocks
are shown in the model, and users will thus see that some
form of comment is present, but the content is opaque
until accessed by a double click and waiting for, e.g., Mi-
crosoft Word to open. Users may also need to install an
.rtf-editor to access the content.

In view of all this, we suggest improving the accessi-
bility of Element Descriptions by adding a small sym-
bol on documented elements, or on a mouse-over to high-
light the element or display the comment text. This en-
sures that developers become aware of an Element De-
scription. DocBlocks similarly could display their (unfor-
matted) comment on a mouse over, without opening an
external editor window.

An alternative approach could be to refrain from using
any other type of commenting feature apart from Anno-
tations and Model Descriptions. This makes comments
directly accessible in the case of Annotations, and gives a
central documentation location to find and automatically
process vital model metadata in the case of Model De-
scriptions. Limiting the set of comment types could also
help developers in their choice of which of the five com-
ment types to use to document a particular aspect of their
model.
While conducting this study, we asked Mathworks devel-
opers whether they view any of the commenting features as
obsolete or to be preferred, in private communication. A
Mathworks engineer disclosed to us that Mathworks views
none of the comment types as obsolete, per se. The Math-
works engineer added that DocBlocks can viably be re-
placed by a Model Description, Annotation, or a Note,
though.

We found class comments in 86% of MATLAB classes.
This stands in contrast with previous findings [39]: 68%
in Java, 23% in Python, and 38% in Smalltalk. As the
class feature is seldom used in MATLAB (only 552 classes
in 17,792 MATLAB source code files), it is an atypical
phenomenon. This could explain the outlying percentage
level. Note that we have checked that the MATLAB IDE
does not create class comments automatically.

Comment Duplication and Duplication Reasons

Many comments in our study set are heavily duplicated,
but different comment types are duplicated in different
ways. For instance, we only found MATLAB comments to
be synthetically or IDE generated. Some duplication actu-
ally is unavoidable, even with good commenting practice:
Element Descriptions refer only to a single, often simple
model element and, therefore, are expected to be more sim-
ple and similar to each other than more complex structures
such as comments for subsystems or complete models. Fol-
lowing up on this, the high amount of generic/copy-pasted
Model Descriptions seems to be haziness by developers: we

15

found many simple copyright statements without any in-
formation concerning the specific model itself. We suggest
that developers should follow guideline jc 0603 (see Sec-
tion 2.4), and be even more specific about the information
of the model description: give at least a title and short
purpose description of the model in addition to author
and copyright information to each model.

Comments at Different Levels of the Subsystem Hierarchy

We found that the most elaborate, least duplicated
comments occur at the root level of models. This is also
the place with the highest comment density. Comment
length does not change from the second layer downwards
– only the frequency of comments at depths two and three
is slightly higher than at lower depths. All this suggests
that developers put more effort into documenting the top
level(s). This might be because the root level and Model
Description offer the possibility to document the complete
model at once at a central place, which is easy to find. In
contrast to this, lower-level comments may focus only on
the direct context, i.e., not the surrounding subsystems
of higher or lower levels, and thus are shorter. Similarly
to our findings, in Java, higher level comments (class, file,
interface) have a higher density than method comments
[48], while method comments are longer and show a higher
comment density than the lower level inline comments [17].

Comment Guidelines

Our search for guidelines on documenting in Simulink
and MATLAB returned only sparse results. In particular,
novice developers would not be guided in most document-
ing decisions, e.g., which elements to comment, what com-
ment type to choose, or where to document. Of the three
guidelines of which we tested developer adherence, only
one was followed. We suspect that the official guidelines
are not well known, or mostly ignored, by open-source de-
velopers. This suggests that developers employ their com-
ments ad-hoc and comments differ from project to project.

We recommend giving clear advice on when to use which
of the many Simulink comment options. We suggest inves-
tigating in more depth why developers currently mostly
use Annotations and hardly use any of the other Simulink
commenting features. We also suggest having one desig-
nated Annotation per subsystem for the subsystem Pur-
pose (Summary and Extend) in a designated corner, e.g.,
top left. This way, developers would know where to look
for the most frequent information. One way to help devel-
opers and nudge them into employing such Annotations
would be to automatically create this designated Annota-
tion, partially pre-filled, at the very moment a new sub-
system is created.

Our last guideline suggestion is to always attach an An-
notation to a model element or a group of elements. If
Annotations are tethered to another element, they cannot
get lost or be forgotten about as easily if a model is refac-
tored or otherwise modified (i.e., documented elements are

moved, copied, or deleted). Developers reading a diagram
do not have the added burden of inferring which comment
is referring to which element. Also, once an element and
its comment have no connection (anymore), reattaching
them presents challenges [44]. The title and purpose An-
notations we proposed should then be tethered to a whole
subsystem. To not overwhelm users with documentation
text, we suggest to give annotations the new feature of
minimization. This way, developers can elaborate design
particularities or anything else at length, without clutter-
ing the view canvas.

RQ 2: Does the amount of documentation vary in differ-
ent models?

Answering RQ 2 gave us interesting insights into the
(non-)correlation of various model metrics. For example,
there is no correlation of model size or complexity to the
length of comments. As models evolve, more model ele-
ments get added, than removed [45]. Only the number of
comments and the total length of comments increase with
models becoming bigger. Taking this together, it means
that as a model grows, developers do not add to exist-
ing comments but add new ones instead. Based on our
findings, it is unclear whether the existing comments get
further updated, as their length remains the same. How-
ever, Jaskolka et al . found that Simulink comments are
among the least changed elements of Simulink models in
their industrial study [20]. This also mirrors findings in
textual programming languages, where comments are not
updated along with their corresponding code [54]. This
fact sets comments up to be out of sync with its corre-
sponding code or model.

Furthermore, we observed that a model’s age is not cor-
related to any other metric of our study. This indicates
that open-source projects either develop their models (not
only comments) at very different speeds or do not consis-
tently work on their models.

We saw a negative correlation between the number of
comments and their median length (also a negative, al-
beit weak correlation to the mean length). This indicates
that developers compensate for creating a higher number
of comments by slightly shortening each. In our manual
classification, we sometimes found short Annotations vi-
sually grouped tightly together, forming a connected doc-
umentation text if one unites the related Annotation texts
of the group. Some developers used these individual An-
notations to format a text, because each Annotation can
be moved freely on the model canvas, so that it aligns to
the developer’s wishes.

We can see in Figure 5 that, in the upper quintiles, the
number of comments and total comment length do not
grow faster than the models themselves. This means that
there is no relative increase in commenting effort in the
biggest models. Before conducting this study, we had the
hypothesis that bigger models are built by more profes-
sional teams, which would put more effort into comment-

16

ing. This does not seem to be the case, at least in open-
source models.

Other observations, like the correlations of size metrics
and cyclomatic complexity, align with correlations of lines
of code to cyclomatic complexity found in Java, C, and
C++ [13].

RQ 3: How can the content of Simulink comments be
classified?

When answering RQ 3, we found that the CCTM tax-
onomy covers a wide breadth of comments of Simulink
and MATLAB, already. We also found it to be easily
extendable. In our samples, only five seldom-used cate-
gories needed to be added to form SCoT. As our work
did not focus on just class comments, but, in contrast to
prior work, also considers models that are often designed
by non-software engineers, we view this to be only mi-
nor additions. We thus expect the SCoT to be applicable
in projects using other languages with only minor adjust-
ments.

The most frequently used higher-level category from the
SCoT for both Simulink and MATLAB is Purpose, show-
ing that developers mostly care about documenting “what
is the code about”.

In our manual classification process, we found (and dis-
carded) very few non-English comments. Even though,
we did not classify them, we briefly analyzed them after
an ad-hoc translation and found them to have similar in-
formation and format to English comments. We therefore
believe that such non-English comments could be classified
similarly to English comments.

Regarding our additional categories for extending the
CCTM in RQ 3, we note that we only found few instances
of the Version history category. We expect more sophis-
ticated projects (as were studied prior with the CCTM)
to usually handle the aspects of Version history either in
release notes or directly in the VCS’ commit history. We
expect the new category IDE Hint to be used only for
languages that use a common IDE. Both MATLAB code
and Simulink models are commonly used in the MATLAB
ecosystem, as a working and licensed MATLAB instal-
lation is necessary for their execution, anyway.9 Lastly,
the new higher-level category Media holds the Simulink-
specific sub-categories Interactive and Picture. Classical
programming languages are limited to text-based com-
ments. However, previous work [35] has found media, such
as images, in README files, which shows developer inter-
est in expressing their documentation in different forms.
In general, we expect other languages to enable comment-
ing via media like audio or video in the future. Our new
higher-level category Media can be extended with such
modalities, easily.

9There is a plugin for MATLAB in Visual Studio Code, but only
very basic features of code editing are available without a working
MATLAB installation.

We imagine that comments of the Interactive category
can be extremely useful in program understanding – both
of abstract purpose and inner design. Various modes or pa-
rameters of the model can be preset, and their execution
can be discovered immersively. Such interactive documen-
tation thus offers the possibility to “show, not tell”.

While answering RQ 3, we manually classified each item.
Prior work [44] already derived heuristics to identify some
categories like Summary, Ownership, and Expand, for the
diagram language Ptolemy,10 with some success. We ex-
pect that similar heuristics could be divised for most of our
categories. Similarly, we expect LLMs to be applicable for
automatic classification, see also Section 7.

RQ 4: How does Simulink documentation compare to tex-
tual programming languages?

The findings from RQs 3 and 4 demonstrated substan-
tial similarities in both quantitative and qualitative terms
between Simulink and MATLAB commenting as well as
Python, Java, and Smalltalk. This shows that Simulink,
although a visual language with a diverse comment feature
set, is, in fact, documented similarly to textual languages.

While comparing Simulink and MATLAB to Python,
Java, and Smalltalk, recall that the prior studies fo-
cused on class comments from high-profile projects. This
showed most prominently in that class comments cov-
ered more of the CCTM categories per comment than in
our sample. This seems intuitive, as class comments are
longer and more exhaustive than other code comments.
In fact, we expect comparing class comments in Python,
Java, and Smalltalk with MATLAB class comments and
Simulink root subsystems’ DocBlocks, main Annotations,
and Model Descriptions to yield similar results.

Quantitatively, the different languages showed a very
similar distribution c.f . Figure 7 – even though different
research teams studied different languages, different com-
ment types, and different project types. For us, this is an
indication that commenting cultures are similar even while
crossing so many boundaries. We thus expect that there is
significant potential for knowledge transfer between find-
ings from comments in textual languages to visual lan-
guages, and vice versa.

6. Threats to validity

6.1. Internal Validity

Although our manual classification process for RQ 3 is
subjective, we mitigate this threat by conducting a triple-
review process with a majority vote and group discussions
for unclear comments, similar to prior work [39]. By em-
ploying this technique, we strive for a more objective classi-
fication. A summary of our classification process is shown

10https://ptolemy.berkeley.edu/ptolemyII/index.htm

17

https://ptolemy.berkeley.edu/ptolemyII/index.htm

in Table 6. Around 20% (150/757) of the reviews ob-
jected that a comment’s category was missing, too much,
or wrongly classified. In the second step, the original eval-
uators judged the reviews themselves and accepted about
75% of them. This left only 38 comments, where a third
reviewer made a final decision after weighing both the eval-
uation and review. While the evaluation and review phase
was evenly distributed by design, the steps afterward de-
pended on the decisions of these two phases. For example,
E3 had the highest agreement rate for reviewing MATLAB
comments, i.e., they issued only few objecting reviews to
the original evaluation.

Some Simulink comments or MATLAB comments are
part of a larger context of related comments. These are
usually graphically close, or in a code line nearby. Our
scripts to collect and sample comments could not link such
“related” comments, and they were thus gathered in isola-
tion. However, in our manual classification, we inspected
each comment, and could thus see, whether a nearby com-
ment was part of the context of our comment to classify.

By answering RQ 2, we found a model’s time under
development not correlating to any other metric, we com-
puted. We hypothesize that Simulink may compute this
time faultily in some cases. On inspection of the times, we
only found 56 times from our 9,033 models to be obviously
erroneous, though. These either had a negative time under
development or one of less than ten seconds – we excluded
them prior to our analysis in Figure 4. All correlations
of time under development that are too weak (shown in
Figure 4 in gray color), are positive. This indicates that
the metric can be assumed to be correct, overall.

Table 6: Overview of the classification process. While 757 comments
underwent an evaluation and review, only 150 of the reviews elicited
objections, and of those only 38 were not accepted by the original
evaluator and thus needed a final decision.

Evaluator
evaluated
comments

objecting
reviews

final
decisions

Simulink
E1 124 25 5
E2 124 28 6
E3 126 21 12

Matlab
E1 127 33 5
E2 128 35 1
E3 128 8 9

total 757 150 38

6.2. External Validity

Our analysis set consists of open-source projects from
GitHub and Mathworks Central. Comments in industry-
projects may differ significantly. Via industrial acquain-
tances, we know that some companies have internal guide-
lines but do not know whether these cover comments and
how they would employ comments in Simulink. Still, our
data set is highly diverse, comprising everything from toy

projects to industry-like projects [7], and thus gives valu-
able insights into how Simulink comments are used in prac-
tice.

7. Related Work

7.1. Comment Analysis

Code comments are an active research topic which has
evolved over decades. Already in 1976, Boehm et al . [6]
started to develop metrics predicting software quality from
quantitatively measuring source code commentary. In par-
ticular, they doubted that comment length alone is an in-
dicator of good software. They also already gave advice
of not over-explaining some code at the expense of leaving
other code uncommented. Lastly, they describe a smell
detecting tool “CODE AUDITOR”, which checks source
code for coding standards, e.g., missing header block com-
ments. In 1978 Krogh [25] not only demanded the presence
of code comments, but also certain qualities of code com-
ments: in the terminology of our paper, Krogh demanded
comments of software Purpose and Usage, and also gave
some examples of Pointers.

Since then, the research community studied a multitude
of aspects of code comments. Some aspects are: the im-
portance of code comments for readability, extensibility
[9, 32], comment coherence [49], comment consistency [54],
comment completeness [18], and comment adherence to
coding guidelines [36, 52]. In the last decade, research on
code comments often focuses on assessing the comment
quality itself [22, 49], classifying comments automatically
[34, 44], completing them [59], updating them [27, 28, 44],
or even generating them [16, 19]. Such approaches often
employ machine learning techniques, which mine code and
comments from open source software projects, to create a
learning database.

Our work employs a taxonomy for classifying class com-
ments from Rani et al ., called Class Comment Type Model
(CCTM). They employed their taxonomy on Smalltalk
classes [40], but also gave a mapping of their taxonomy
[39] to prior taxonomies used for Java and Python [34, 58].
In our work, we slightly adapt and extend the CCTM for
our study set of Simulink and MATLAB projects. Kostić
et al . give an overview of code comment taxonomies [24]
and used a proposed taxonomy to classify multi-language
comments [23]. However, their taxonomy is much more
coarse-grained, than the CCTM.

Blasi et al . [5] studied comment duplication (Type I,
III comment clones) in Java source code. They strived to
identify problematic clones that were too generic or copy-
pasted. We only searched for Type I comment clones in
Simulink and MATLAB. Our classification also did not
aim at finding problematic duplications, but at finding the
duplication origin. We thus classified comment duplication
as generic/copy-paste, library imports, IDE generation, or
synthetic generation.

18

7.2. Simulink Comments

There has also been some prior interest in studying
comments in Simulink. Pantelic et al . studied industrial
Simulink projects and their evolution, as well as com-
menting practices [20, 33]. In [20], they studied the fre-
quency of changes on various model comments during the
model’s development. They found that comments were
least often changed. Within the comment changes, An-
notations were changed most often, while DocBlocks re-
mained mostly static. Pantelic et al . did not study the
frequency of changes on Element Descriptions (block de-
scription, signal description) or Notes – we considered both
features in our study. They also did not analyze the actual
comment information or other characteristics like lengths
or duplication. As they studied an industrial project, the
experimental data and most basic information about the
project itself is not available. In their anecdote-driven
work [33], Pantelic et al . argue that current Simulink mod-
eling practice faces several challenges: a lack of automa-
tion, (high quality) tools, and documentation templates.
In fact, even a standard process of documentation is miss-
ing in a culture of prototype first, documentation third
(or never). Pantelic et al . refute that (Simulink) mod-
els are already documentation, as the model only provides
syntactical understanding, while documentation provides
additional semantic understanding. They demand good
documentation providing information about (1.) software
requirements specification, which should give a model’s
black box behavior in a more abstract way than the di-
rect implementation; and (2.) software design descrip-
tion (SDD), which should give semantics about the in-
ternal design, anticipated changes, hierarchy, and inter-
faces. The research group around Pantelic also developed
a template for including SDD information into the model
and a tool helping with the documentation process [42].
DocBlocks are created automatically, so that the devel-
opers can manually enter the documentation into a des-
ignated location. Their tool creates such DocBlocks for
Purpose, Internal Design (focusing on interfaces), Ratio-
nale, and Anticipated Changes (see SDD, above). Devel-
opers are also expected to document changelogs and sys-
tem acronyms/notation/definitions. Overall, their tem-
plate covers the most-used categories of the CCTM used
in our work.

While there are some studies, collecting open-source
Simulink models [10, 46], and providing various metrics of
models [3, 7, 47], none of those studies analyzed Simulink
comments.

To the best of our knowledge, we are the first to
study the commenting practice in open-source Simulink
projects, as well as analyzing actual comment informa-
tion of Simulink models. We are not aware of studies of
comments in other visual modeling languages like UML or
SysML.

8. Conclusion and Future Work

In this study, we found that open source MATLAB and
Simulink projects feature a wide variety of types of com-
ments, covering nearly the whole spectrum of the commen-
tary taxonomy CCTM in addition to others. Many of the
comments are duplicated by various means and are present
in all levels of the model hierarchy, while developers focus
mostly on the highest levels. We have shown that bigger
and more complex models feature more comments and a
higher total comment length, while each comment does
not change in size. Model age on the other hand is nei-
ther a factor in model size nor comment amount. Finally,
we found that the CCTM taxonomy is applicable for lan-
guages of different paradigms, and we extended it into a
more complete taxonomy, named SCoT. We expect SCoT
to be useful for classifying comments of all types, and lan-
guages, while probably needing only slight adjustments or
additions.

We found comments in Simulink to only stand out in
their many comment types in comparison to textual lan-
guages. In terms of information diversity and distribution,
Simulink comments fall in line with all other studied lan-
guages. We proposed a number of ways to support devel-
opers in commenting their Simulink models. This could
be done by modifying, or adding Simulink IDE features,
greatly extending guidelines on Simulink comments, and
comment smell detection – we expect many of our sugges-
tions to also be useful for other visual languages and their
tools.

While our work only learns from artifacts, the models
and source code, in the future, we want to directly sur-
vey developers. Receiving opinions on how developers in-
tend to document, their thought process while doing so,
and their struggles, would put our findings into a more
complete perspective. Similarly, we could scrape Simulink
documentation related discussion from forums or mailing
lists, like in [37], to gather insights into Simulink-specific
documentation issues.

As the current guidelines on MATLAB and Simulink
commentary are leaving many gaps and are not widely fol-
lowed, we would like to create exhaustive modeling guide-
lines together with practitioners. This would be partic-
ularly useful in partnership with an industrial partner,
as our current knowledge only comes from open source
projects. After guideline synthesis, we plan to build a com-
ment smell detector, which finds parts that need (more)
commentary or even automatically refactors them.

References

[1] Silvia Abrahão, Francis Bourdeleau, Betty Cheng, Sahar
Kokaly, Richard Paige, Harald Stöerrle, and Jon Whittle, User
experience for model-driven engineering: Challenges and future
directions, 2017 ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
2017, pp. 229–236.

19

[2] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura
Moreno, Gabriele Bavota, Michele Lanza, and David C Shep-
herd, Software documentation: the practitioners’ perspective,
Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, 2020, pp. 590–601.

[3] Tiago Amorim, Alexander Boll, Ferry Bachmann, Timo Kehrer,
Andreas Vogelsang, and Hartmut Pohlheim, Simulink bus usage
in practice: an empirical study, Journal of Object Technology
22 (2023), no. 2, 2:1–14, The 19th European Conference on
Modelling Foundations and Applications (ECMFA 2023).

[4] Paul Barnard, Software development principles applied to
graphical model development, AIAA Modeling and Simulation
Technologies Conference and Exhibit, 2005, p. 5888.

[5] Arianna Blasi, Nataliia Stulova, Alessandra Gorla, and Os-
car Nierstrasz, Replicomment: Identifying clones in code com-
ments, Journal of Systems and Software 182 (2021), 111069.

[6] Barry W Boehm, John R Brown, and Myron Lipow, Quan-
titative evaluation of software quality, Proceedings of the 2nd
international conference on Software engineering, 1976, pp. 592–
605.

[7] Alexander Boll, Florian Brokhausen, Tiago Amorim, Timo
Kehrer, and Andreas Vogelsang, Characteristics, potentials,
and limitations of open-source Simulink projects for empiri-
cal research, Software and Systems Modeling 20 (2021), no. 6,
2111–2130.

[8] Alexander Boll, Nicole Vieregg, and Timo Kehrer, Replicability
of experimental tool evaluations in model-based software and
systems engineering with MATLAB/Simulink, Innovations in
Systems and Software Engineering (2022), 1–16.

[9] Raymond PL Buse and Westley R Weimer, Learning a metric
for code readability, IEEE Transactions on software engineering
36 (2009), no. 4, 546–558.

[10] Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian,
Taylor T Johnson, and Christoph Csallner, A curated corpus of
Simulink models for model-based empirical studies, Proceedings
of the 4th International Workshop on Software Engineering for
Smart Cyber-Physical Systems, 2018, pp. 45–48.

[11] Moacyr AG De Brito, Leonardo P Sampaio, G Luigi, Guil-
herme A e Melo, and Carlos A Canesin, Comparative analysis
of MPPT techniques for PV applications, 2011 International
Conference on Clean Electrical Power (ICCEP), IEEE, 2011,
pp. 99–104.

[12] James L Elshoff and Michael Marcotty, Improving computer
program readability to aid modification, Communications of the
ACM 25 (1982), no. 8, 512–521.

[13] Jay Graylin, Joanne E Hale, Randy K Smith, Hale David,
Nicholas A Kraft, WARD Charles, et al., Cyclomatic complex-
ity and lines of code: empirical evidence of a stable linear re-
lationship, Journal of Software Engineering and Applications 2
(2009), no. 03, 137.

[14] Alireza Haghighatkhah, Ahmad Banijamali, Olli-Pekka Paka-
nen, Markku Oivo, and Pasi Kuvaja, Automotive software en-
gineering: A systematic mapping study, Journal of Systems and
Software 128 (2017), 25–55.

[15] Hao He, Understanding source code comments at large-scale,
Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, 2019, pp. 1217–1219.

[16] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin, Deep code com-
ment generation, Proceedings of the 26th conference on program
comprehension, 2018, pp. 200–210.

[17] Yuan Huang, Hanyang Guo, Xi Ding, Junhuai Shu, Xiang-
ping Chen, Xiapu Luo, Zibin Zheng, and Xiaocong Zhou, A
comparative study on method comment and inline comment,
ACM Transactions on Software Engineering and Methodology
32 (2023), no. 32, 1–26.

[18] Yuan Huang, Nan Jia, Junhuai Shu, Xinyu Hu, Xiangping
Chen, and Qiang Zhou, Does your code need comment?, Soft-
ware: Practice and Experience 50 (2020), no. 3, 227–245.

[19] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke
Zettlemoyer, Summarizing source code using a neural attention

model, 54th Annual Meeting of the Association for Computa-
tional Linguistics 2016, Association for Computational Linguis-
tics, 2016, pp. 2073–2083.

[20] Monika Jaskolka, Vera Pantelic, Alan Wassyng, Mark Lawford,
and Richard Paige, Repository mining for changes in Simulink
models, 2021 ACM/IEEE 24th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
2021, pp. 46–57.

[21] Marcel Jerzyk and Lech Madeyski, Code smells: A comprehen-
sive online catalog and taxonomy, Developments in Informa-
tion and Knowledge Management Systems for Business Appli-
cations: Volume 7, Springer, 2023, pp. 543–576.

[22] Ninus Khamis, René Witte, and Juergen Rilling, Auto-
matic quality assessment of source code comments: the
JavadocMiner, Natural Language Processing and Information
Systems: 15th International Conference on Applications of Nat-
ural Language to Information Systems, NLDB 2010, Cardiff,
UK, June 23-25, 2010. Proceedings 15, Springer, 2010, pp. 68–
79.

[23] Marija Kostić, Vuk Batanović, and Boško Nikolić, Monolin-
gual, multilingual and cross-lingual code comment classifica-
tion, Engineering Applications of Artificial Intelligence 124
(2023), 106485.

[24] Marija Kostić, Aleksa Srbljanović, Vuk Batanović, and Boško
Nikolić, Code comment classification taxonomies, Proceedings
of the Ninth IcETRAN Conference, 2022.

[25] Fred T Krogh, Algorithms policy, ACM Transactions on Math-
ematical Software (TOMS) 4 (1978), no. 2, 97–99.

[26] Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner,
and Jörgen Hansson, Assessing the state-of-practice of model-
based engineering in the embedded systems domain, Model-
Driven Engineering Languages and Systems (Cham) (Juergen
Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and
Emilio Insfran, eds.), Springer International Publishing, 2014,
pp. 166–182.

[27] Bo Lin, Shangwen Wang, Zhongxin Liu, Xin Xia, and Xi-
aoguang Mao, Predictive comment updating with heuristics and
ast-path-based neural learning: A two-phase approach, IEEE
Transactions on Software Engineering 49 (2022), no. 4, 1640–
1660.

[28] Shifan Liu, Zhanqi Cui, Xiang Chen, Jun Yang, Li Li, and Liwei
Zheng, Tbcup: A transformer-based code comments updating
approach, 2023 IEEE 47th Annual Computers, Software, and
Applications Conference (COMPSAC), IEEE, 2023, pp. 892–
897.

[29] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer
Koschke, On the comprehension of program comprehension,
ACM Transactions on Software Engineering and Methodology
(TOSEM) 23 (2014), no. 4, 1–37.

[30] Rajib Mall, Fundamentals of software engineering, PHI Learn-
ing Pvt. Ltd., 2018.

[31] Vishal Misra, Jakku Sai Krupa Reddy, and Sridhar Chi-
malakonda, Is there a correlation between code comments and
issues? an exploratory study, Proceedings of the 35th Annual
ACM Symposium on Applied Computing, 2020, pp. 110–117.

[32] Eriko Nurvitadhi, Wing Wah Leung, and Curtis Cook, Do
class comments aid Java program understanding?, 33rd Annual
Frontiers in Education, 2003. FIE 2003., vol. 1, IEEE, 2003,
pp. T3C–T3C.

[33] Vera Pantelic, Alexander Schaap, Alan Wassyng, Victor Ban-
dur, and Mark Lawford, Something is rotten in the state of doc-
umenting Simulink models., MODELSWARD, 2019, pp. 503–
510.

[34] Luca Pascarella and Alberto Bacchelli, Classifying code com-
ments in Java open-source software systems, 2017 IEEE/ACM
14th International Conference on Mining Software Repositories
(MSR), 2017, pp. 227–237.

[35] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung,
Thushari Atapattu, and David Lo, Categorizing the content of
GitHub readme files, Empirical Software Engineering 24 (2019),
1296–1327.

20

[36] Pooja Rani, Suada Abukar, Nataliia Stulova, Alexandre Bergel,
and Oscar Nierstrasz, Do comments follow commenting con-
ventions? a case study in Java and Python, 2021 IEEE 21st
International Working Conference on Source Code Analysis and
Manipulation (SCAM), IEEE, 2021, pp. 165–169.

[37] Pooja Rani, Mathias Birrer, Sebastiano Panichella, Moham-
mad Ghafari, and Oscar Nierstrasz, What do developers discuss
about code comments?, 2021 IEEE 21st International Work-
ing Conference on Source Code Analysis and Manipulation
(SCAM), IEEE, 2021, pp. 153–164.

[38] Pooja Rani, Arianna Blasi, Nataliia Stulova, Sebastiano
Panichella, Alessandra Gorla, and Oscar Nierstrasz, A decade
of code comment quality assessment: A systematic literature
review, Journal of Systems and Software 195 (2023), 111515.

[39] Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, An-
drea Di Sorbo, and Oscar Nierstrasz, How to identify class com-
ment types? a multi-language approach for class comment clas-
sification, Journal of Systems and Software 181 (2021), 111047.

[40] Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Mo-
hammad Ghafari, and Oscar Nierstrasz, What do class com-
ments tell us? an investigation of comment evolution and
practices in pharo smalltalk, Empirical Software Engineering
26 (2021), no. 6, 112.

[41] Jef Raskin, Comments are more important than code: The
thorough use of internal documentation is one of the most-
overlooked ways of improving software quality and speeding im-
plementation., Queue 3 (2005), no. 2, 64–65.

[42] Alexander Schaap, Gordon Marks, Vera Pantelic, Mark Law-
ford, Gehan Selim, Alan Wassyng, and Lucian Patcas, Docu-
menting Simulink designs of embedded systems, Proceedings of
the 21st ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings
(New York, NY, USA), MODELS ’18, Association for Comput-
ing Machinery, 2018, p. 47–51.

[43] Jan Schroeder, Christian Berger, Miroslaw Staron, Thomas
Herpel, and Alessia Knauss, Unveiling anomalies and their im-
pact on software quality in model-based automotive software re-
visions with software metrics and domain experts, Proceedings
of the 25th International Symposium on Software Testing and
Analysis, 2016, pp. 154–164.

[44] Christoph Daniel Schulze, Christina Plöger, and Reinhard von
Hanxleden, On comments in visual languages, Diagrammatic
Representation and Inference: 9th International Conference, Di-
agrams 2016, Philadelphia, PA, USA, August 7-10, 2016, Pro-
ceedings 9, Springer, 2016, pp. 219–225.

[45] Sohil Lal Shrestha, Alexander Boll, Shafiul Azam Chowdhury,
Timo Kehrer, and Christoph Csallner, Evosl: A large open-
source corpus of changes in Simulink models & projects, MOD-
ELS ’23: ACM/IEEE 26th International Conference on Model
Driven Engineering Languages and Systems, 2023, pp. 273–284.

[46] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph
Csallner, Slnet: A redistributable corpus of 3rd-party Simulink
models, Proceedings of the 19th International Conference on
Mining Software Repositories (New York, NY, USA), MSR ’22,
Association for Computing Machinery, 2022, p. 237–241.

[47] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph
Csallner, Replicability study: Corpora for understanding
Simulink models & projects, 2023.

[48] Murali Sridharan, Mika Mäntylä, Maëlick Claes, and Leevi
Rantala, Soccminer: a source code-comments and comment-
context miner, Proceedings of the 19th International Conference
on Mining Software Repositories, 2022, pp. 242–246.

[49] Daniela Steidl, Benjamin Hummel, and Elmar Juergens, Quality
analysis of source code comments, 2013 21st international con-
ference on program comprehension (icpc), Ieee, 2013, pp. 83–92.

[50] Margaret-Anne Storey, Jody Ryall, Janice Singer, Del Myers,
Li-Te Cheng, and Michael Muller, How software developers use
tagging to support reminding and refinding, IEEE Transactions
on software engineering 35 (2009), no. 4, 470–483.

[51] Mario F Triola, William Martin Goodman, Richard Law, and
Gerry Labute, Elementary statistics, Pearson/Addison-Wesley

Reading, MA, 2006.
[52] Chao Wang, Hao He, Uma Pal, Darko Marinov, and Minghui

Zhou, Suboptimal comments in Java projects: From indepen-
dent comment changes to commenting practices, ACM Trans-
actions on Software Engineering and Methodology 32 (2023),
no. 2, 1–33.

[53] Jens Weiland and Peter Manhart, A classification of model-
ing variability in Simulink, Proceedings of the 8th international
workshop on variability modelling of software-intensive systems,
2014, pp. 1–8.

[54] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza,
A large-scale empirical study on code-comment inconsistencies,
2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), IEEE, 2019, pp. 53–64.

[55] Rebecca Wirfs-Brock and Alan McKean, Object design: roles,
responsibilities, and collaborations, Addison-Wesley Profes-
sional, 2003.

[56] Scott N Woodfield, Hubert E Dunsmore, and Vincent Y Shen,
The effect of modularization and comments on program com-
prehension, Proceedings of the 5th international conference on
Software engineering, 1981, pp. 215–223.

[57] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E.
Hassan, and Shanping Li, Measuring program comprehension:
A large-scale field study with professionals, IEEE Transactions
on Software Engineering 44 (2018), no. 10, 951–976.

[58] Jingyi Zhang, Lei Xu, and Yanhui Li, Classifying Python code
comments based on supervised learning, Web Information Sys-
tems and Applications (Cham) (Xiaofeng Meng, Ruixuan Li,
Kanliang Wang, Baoning Niu, Xin Wang, and Gansen Zhao,
eds.), Springer International Publishing, 2018, pp. 39–47.

[59] Xiaowei Zhang, Weiqin Zou, Lin Chen, Yanhui Li, and Yum-
ing Zhou, Towards the analysis and completion of syntactic
structure ellipsis for inline comments, IEEE Transactions on
Software Engineering 49 (2022), no. 4, 2285–2302.

21

	Introduction
	Background
	Simulink
	Simulink Comments
	MATLAB Comments
	Simulink and MATLAB Comment Guidelines
	The Class Comment Type Model (CCTM)

	Methodology
	Research Questions
	RQ 1
	RQ 2
	RQ 3
	RQ 4
	Study Subjects and Data Collection

	Results
	RQ 1
	Answer to RQ 1
	RQ 2
	Answer to RQ 2
	RQ 3
	Answer to RQ 3
	RQ 4
	Answer to RQ 4

	Discussion
	RQ 1
	RQ 2
	RQ 3
	RQ 4

	Threats to validity
	Internal Validity
	External Validity

	Related Work
	Comment Analysis
	Simulink Comments

	Conclusion and Future Work

